Подбор калорифера методом математического расчёта

Отопление с использованием воздуха — принцип работы

Отопление с использованием воздушной массы, поступающей внутрь помещения, построено на принципе терморегуляции. Другими словами, нагретый или охлажденный до определенной температуры воздух подается непосредственно внутрь помещений. Т.е. таким образом, может осуществляться и обогрев внутренних пространств и кондиционирование.

Основным элементом системы является нагреватель — печь канального типа, оснащенный газовой горелкой. В процессе сгорания газа вырабатывается тепло, которое поступает в теплообменник и уже после этого, нагретые до определенной температуры массы поступают в воздушное пространство отапливаемого помещения. Система воздушного отопления обязательно должна быть оборудована сетью воздуховодов и каналом для выхода наружу токсичных продуктов горения.

За счет постоянного притока свежего воздуха печь получает приток кислорода, который является одним из основных компонентов топливной массы. Смешиваясь в камере сгорания с горючим газом, кислород увеличивает интенсивность горения, повышая тем самым температуру топливной массы. В старых системах, используемых еще древними римлянами, основная проблема заключалась в попадании в отапливаемые помещения вместе с теплым воздухом вредных продуктов горения.

Автономные структуры отопления, построенные на принципе нагрева воздушных масс, нашли свое применение в системе обогрева больших промышленных зданий и объектов. С появлением компактных и удобных в эксплуатации воздухонагревателей, для работы которых используется газ, твердое или жидкое топливо, стало возможным применение систем такого обогрева в быту. Обычный, традиционный нагреватель воздуха, который принято называть теплогенератор, имеет камеру сгорания, теплообменник рекуперационнного типа, горелку и нагнетательную группу.

Установка печей воздушного отопления в частных и загородных домах вполне оправдана и экономически выгодна. Для квартиры данная схема обогрева не подходит, ввиду необходимости прокладки большого количества громоздких воздуховодов, присутствия технического шума и высокой пожароопасности.

Современные комплексы отопления в основном построены на подобном принципе, однако в большинстве конструкций  прямой нагрев воздушной массы не предусматривается. Нагрев осуществляется с помощью тепловых генераторов, которых на сегодняшний день достаточно много. Такие агрегаты имеют в своей конструкции рекуперативные теплообменники, благодаря которым происходит отделение высокотемпературных дымовых газов от подогретого воздуха. Такая технологическая особенность современных воздушных отопительных систем, подавать в помещения чистый, нагретый до необходимой температуры воздух.

Продукты сгорания в данном случае уходят через дымоход. Хорошо отлаженная работа вытяжки и чистый дымоход, обеспечивают безопасность всей системы обогрева подобного типа во время работы.

Система отопления с агрегатом для нагрева воздуха

Система обогрева дома, основывающаяся на подаче прогретого до установленной температуры воздуха непосредственно в дом, представляет особый интерес для владельцев собственного жилья.

Такая конструкция отопительной системы состоит из следующих важных узлов:

  • калорифера, выступающего в роли теплогенератора, подогревающего воздух;
  • каналов (воздуховодов), по которым поступают нагретые воздушные массы в дом;
  • вентилятор, направляющий хорошо прогретый воздух по всему объему помещения.

Преимуществ у системы такого типа много. К ним относится и высокий КПД, и отсутствие вспомогательных элементов для теплообмена в виде радиаторов, труб, и возможность объединить ее с климатической системой, и малая инерционность, в результате чего прогрев больших объемов происходит очень быстро.

Для многих домовладельцев недостатком является то, что монтаж системы возможен только одновременно со строительством самого дома и затем дальнейшая модернизация ее невозможна. Минусом является и такой нюанс, как обязательное наличие резервного питания и потребность в регулярном техническом обслуживании.

4 Расчёт необходимой мощности

Чтобы используемая система соответствовала всем эксплуатационным требованиям, итоговый потребитель должен соблюдать ряд обязательных правил. Правильный расчёт мощности нагревателя воздуха подразумевает использование следующих исходных параметров:

  • Точный показатель исходной температуры (t ул.).
  • Показатель производительности установки — общее количество воздуха, которое перегоняется за 60 минут.
  • Итоговая температура воздуха — t кон.
  • Уровень теплоёмкости и плотности используемого воздуха (эти данные должны браться исключительно из специальной таблицы).

Когда нужно провести расчёт мощности калорифера для вентиляции, то начинать следует с вычисления площади сечения по фронту воздухонагревательного агрегата. Если эта величина достоверно известна, тогда можно получить предварительные параметры установки с небольшим запасом.

Для решения этой задачи специалисты всегда используют одну и ту же вычислительную формулу: АФ = Ip / 3600 (Qp). Буква I обозначает объёмный расход использованного воздуха. Производительность всегда указывается в метрах кубических за час. Р — это своеобразная плотность воздуха, которая измеряется исключительно в кг. А вот массовая скорость в рассчитываемом сечении обозначается как Qp.

Когда требуемый параметр известен, то для всех дальнейших вычислений обязательно используют типовой размер калорифера. Если во время расчёта получился большой итоговый показатель площади, тогда обязательно монтируют сразу несколько идентичных установок параллельно друг другу. Их суммарная площадь должна быть равна полученному ранее значению.

Чтобы провести расчёт калорифера приточной вентиляции определённого объёма, нужно заранее узнать общий расход подогреваемого теплоносителя в кг за 60 минут. Желательно использовать следующую формулу: R = L yp. Буква р отображает плотность воздуха в условиях средней температуры. Определить этот показатель достаточно просто, мастер должен просуммировать показатели температуры на входе и выходе из системы, полученное число делится на 2. Все показатели плотности можно узнать в специальной таблице.

На следующем этапе можно приступать к вычислению расходов тепла, которое уходит на обогрев помещения. Получить точную цифру можно благодаря формуле: Q (Вт) = R y c y (t кон. — t нач.). Большая буква R обозначает массовый расход воздуха в килограммах за час. Чтобы полученные данные были максимально достоверными, мастеру необходимо учесть удельную ёмкость теплоносителя. Всё зависит от температуры входящего воздуха.

Стоит отметить, что табличный расчёт электрокалорифера для вентиляции часто отличается от реальных данных в сторону уменьшения. В то время как итоговая производительность такой установки снижается из-за частичного засорения рабочих трубок. Любое превышение допустимой величины запаса считается нежелательным, так как это может спровоцировать переохлаждение и даже аварийное размораживание системы в слишком большие морозы.

Классификация калориферов по разным признакам

Калориферы включают в конструкцию системы отопления для нагрева воздуха. Существуют следующие группы этих приборов по виду используемого теплоносителя: водяные, электрические, паровые. Электрические приборы имеет смысл использовать для помещений площадью не более 100 м?. Для зданий с большими площадями более рациональным выбором будут калориферы водяные, которые функционируют только при наличии источника тепла.

Наиболее популярны паровые и водяные калориферы. Как первые, так и вторые по форме поверхности делятся на 2 подвида: ребристые и гладкотрубные. Ребристые калориферы по геометрии ребер бывают пластинчатыми и спирально-навивными.

По конструкционному исполнению эти приборы могут быть одноходовыми, когда теплоноситель в них совершает движение по трубкам, придерживаясь постоянного направления и многоходовыми, в крышках которых имеются перегородки, вследствие чего направление движение теплоносителя постоянно меняется. В продажу поступают 4 модели калориферов водяных и паровых, отличающиеся площадью поверхности нагрева:

  • СМ — самая малая с одним рядом труб;
  • М — малая с двумя рядами труб;
  • С — средняя с трубами в 3 ряда;
  • Б — большая, имеющая 4 ряда труб.

Водяные калориферы в процессе эксплуатации выдерживают большие температурные колебания — 70-110?. Для хорошей работы калорифера этого типа вода, циркулирующая в системе должна быть нагретой максимум до 180?. В теплое время года калорифер может выполнять роль вентилятора.

Инфракрасное оборудование

Если вы хотите приобрести самый экономичный обогреватель для квартиры, то следует рассмотреть инфракрасные устройства. В качестве нагревательных элементов в них выступает кварцевый излучатель. С помощью него обеспечивается нагрев предметов, но не воздуха. Эффективны такие агрегаты для оперативного нагрева помещений и создания локальных зон направленного излучения.

ИК-устройство может стать самым экономичным обогревателем для дачи. Но потребители подчеркивают, что за пределами действия излучения комфорт иссякает. Если хотите приобрести мобильное устройство, которое можно будет перемещать с места на место, то следует выбирать модель на ножках. Использовать такие установки можно даже на открытом воздухе.

Наиболее популярными вариантами инфракрасного оборудования, согласно отзывам, являются модели, которые поставляются следующими компаниями:

  • Eko.
  • UFO.
  • Saturn.
  • Runwin.
  • Beko.

Потребители подчеркивают, что если необходимо обогреть помещение площадью до 20 м2, достаточно будет около 120 минут. Электричество при этом потребляется в объеме 90 Вт/м2.

Расчет тепловой мощности обогрева помещения

Для правильного выбора нагревателя, предлагаем вам ознакомиться с правилами расчета тепловой мощности, необходимой для вашего конкретного случая применения:

V x ∆T x K = ккал/ч

V — Объем обогреваемого помещения (длина х ширина х высота), м 3

∆Т — Разница между ˚t воздуха вне помещения и необходимой ˚t внутри помещения, ˚С

К — Коэффициент тепловых потерь (зависит от типа конструкции и изоляции помещения):

Без теплоизоляции ( К=3,0-4,0 ) — Деревянная конструкция или конструкция из гофрированного металлического листа.

Простая теплоизоляция ( К=2,0-2,9 ) — Здание с одинарной кирпичной кладкой, упрощенная конструкция окон и крыши.

Средняя теплоизоляция ( К=1,0-1,9 ) — Стандартная конструкция. Двойная кирпичная кладка, крыша со стандартной кровлей, небольшое кол-во окон.

Высокая теплоизоляция ( К=0,6-0,9 ) — Кирпичные стены с двойной теплоизоляцией, небольшое кол-во окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала.

Пример:

Объем помещения: 5 х 16 х 2,5 = 200

∆Т: Температура наружного воздуха -20 °С. Требуемая температура внутри помещения +25 °С. Разница между тем­пературами внутри и снаружи +45 °С.

К: Рассмотрим вариант со средней теплоизоляцией (1-1,9). Выберите то значение, которое на ваш взгляд, наиболее соответствует вашему помещению. Чем хуже теплоизоляция, тем больший коэффициент нужно выбирать. Например 1,7.

Расчет: 200 х 45 х 1,7 = 15 300 ккал\ч

1 кВт = 860 ккал\ч, соответственно 15 300\860 = 17,8 кВт.

Газовые и дизельные калориферы прямого нагрева, можно использовать только в хорошо проветриваемых помещениях, или на открытых пространствах. Дизельные калориферы непрямого нагрева, можно использовать в закрытых помещениях, при условии отвода сгораемых газов за пределы помещения.

Таблица Мощности для помещений:

Расчет мощности можно сделать с помощью данной схемы (ВЫ можете скачать и распечать схему ниже)

Калорифер КП 311 (воздухонагреватель ВНП 311 хл). Производство и технические характеристики калорифера КП-311

Калориферы

Паровой калорифер (воздухонагреватель) КП (ВНП) 311-паровоздушный отопительный аппарат с биметаллическими нагревательными элементами, использующий в качестве первичного источника нагрева сухой насыщенный пар до 190ºС.Сфера применения воздухонагревателей КП (ВНП 113 ..22) 311 производственные промышленные и складские помещения, ангары, мастерские, боксы и т. п.Номинальный объем нагреваемого данным воздухообогревателем воздуха составляет – 16000 м3/час (но может варьироваться от 13000 до 25000). Температура воздуха на выходе – в зависимости от объема нагнетаемого воздуха и подаваемой температуры пара. Регулировка температуры также может осуществляться при помощи установленных обводных клапанов (с электроприводом и без).Схема установки калорифера КП (ВНП113)-311 – с вертикальным расположением теплонесущих трубок. Сверху и снизу каркаса теплообменника ввариваются патрубки (штуцера) — с фланцами (по заказу) или нет.

Основные теплотехнические показатели:Поверхность теплообмена (площадь) —63,6 м²    Объем нагреваемого воздуха —16000 м³/ч    Вес (масса) теплообменника —187 кгЕмкость (вместимость) парового калорифера КП 311 —0,0383 м3     Производительность по теплу —424 кВтГабаритные размеры воздухоподогревателя —1727 х 1075 х 180 мм

Чертеж, теплотехнические показатели, габаритные размеры и масса парового калорифера КП 311 (ВНП-311) хл

Наименование  калорифера

Производительность воздухонагревателя

Площадь поверхности теплообмена

Габаритные и присоединительные размеры теплообменника, мм

Масса

По воздуху, м3/ч

По теплу, кВт

м2

L

L 1

L 2

L 3

l

l  1

l  2

C

dy

кг

КП-311 (ВНП 113-311) хл

16000

424

63,6

1655

1703

1727

1774

1003

1051

1075

912

76

187

Число ходов по внутреннему теплоносителю

Число рядов по ходу движения воздуха

Длина теплоотдающего элемента (в свету), м

Площадь, м2

поверхности теплопередачи

фронтального сечения

сечения коллектора

сечения патрубка

живого сечения для прохода теплоносителя

1

3

1.658

63.6

1.660

0.00379

0.00509

0.01662

Расчет парового воздухонагревателя КП-311 (ВНП 311)

Ниже представлены табличные данные с рабочими параметрами калорифера КП (ВНП 113 311) хл. Выложены следующие характеристики: производительность по воздуху и теплу, потребление пара, температурные показатели и др.

Таблица некоторых расчетных параметров парового калорифера КП (ВНП) 311 хл

Давление насыщенного пара – 0.1 МПа    Температура пара – 99.6 °C

Расчетные данные

Объем нагреваемого воздуха – 16000 м3/час

Температура приточного воздуха на входе в воздухонагреватель, °C

-35

-20

-10

+10

+20

Температура нагретого воздуха на выходе из калорифера КП-311, °C

+38

+46

+51

+56

+61

+65

Массовая скорость в фронтальном сечении, кг/м2•с

3.44

3.30

3.22

3.14

3.06

2.99

Аэродинамическое сопротивление, Па

64

59

56

54

51

49

Коэффициент теплопередачи, Вт/(м2•°C)

71.449

70.197

69.419

68.668

67.944

67.291

Температурный напор, °C

93.4

82.2

75.0

67.8

60.6

54.0

Тепловая мощность для нагрева, кВт

424

367

331

296

262

231

Расход пара, кг/час

677

585

528

472

417

369

 

Давление насыщенного пара – 0.25 МПа        Температура пара – 127.4 °C

Расчетные данные

Объем нагреваемого воздуха – 1900 м3/час

Температура приточного воздуха на входе в воздухонагреватель, °C

-32

-27

-22

-15

-10

Температура нагретого воздуха на выходе, °C

+50

+53

+55

+59

+62

+68

Массовая скорость в фронтальном сечении, кг/м2•с

3.98

3.92

3.87

3.80

3.75

3.65

Аэродинамическое сопротивление, Па

84

81

80

77

75

71

Коэффициент теплопередачи, Вт/(м2•°C)

76.054

75.594

75.199

74.592

74.160

73.322

Температурный напор воздухонагревателя КП (ВНП 113-311), °C

113.5

109.6

106.3

100.9

97.0

89.1

Тепловая мощность для нагрева, кВт

549

527

508

479

457

416

Расход пара, кг/час

906

870

839

790

755

686

 

Давление насыщенного пара – 0.35 МПа        Температура пара – 138.9 °C

Расчетные данные

Объем нагреваемого воздуха – 23000 м3/час

Температура приточного воздуха на входе в воздухонагреватель, °C

28

18

9

+2

+7

+14

Температура нагретого воздуха на выходе из калорифера, °C

+527

+58

+63

+70

+73

+76

Массовая скорость в фронтальном сечении, кг/м2•с

4.76

4.63

4.53

4.39

4.34

4.27

Аэродинамическое сопротивление, Па

117

111

106

101

98

95

Коэффициент теплопередачи, Вт/(м2•°C)

82.206

81.232

80.410

79.392

78.954

78.416

Температурный напор парового теплообменника, °C

122.6

114.7

107.9

99.0

95.1

90.4

Тепловая мощность для нагрева, кВт

641

593

552

500

478

451

Расход пара калорифером КП (ВНП) – 311 хл, кг/час

1074

994

925

838

801

756

Коэффициенты теплопередачи и аэродинамическое сопротивление калорифера КП 311 (ВНП 113-311) парового

Главная | Продукция | Каталог | Калориферы | Отопительные агрегаты | Расчет онлайн | Контакты/Прайс | Главная Карта Сайта

Расчет калорифера

Калориферы – приборы, применяемые для нагревания воздуха в приточных системах вентиляции, системах кондиционирования воздуха, воздушного отопления, а также в сушильных камерах.

Подбор калорифера осуществляется на холодный период.

  1. Определяем расход тепла на нагревание приточного воздуха (Богословский, стр. 202, ф-ла XII.1):

где – массовое количество нагреваемого воздуха, кг/ч;

– начальная и конечная температура воздуха, т.е. до калорифера и после него соответственно;

– удельная теплоемкость воздуха ().

  1. Задаваясь массовой скорость 4,6 кг/с·м2 находим необходимую площадь живого сечения калориферной установки (Богословский, стр. 203, ф-ла XII.4):

Калорифер с данной площадью живого сечения существует, следовательно, необходимо установить только 1 калорифер.

  1. Определяемся с установкой калориферов. Теплоноситель принимаем – воду. Она должна пройти через площадь сечения трубок каждого калорифера (принимаем по табл. 2.23 спр. Староверова, стр. 424):

– температура горячей воды

– температуры оборотной воды

  1. Определяем скорость движения теплоносителя в трубках калорифера (Богословский, стр. 203, ф-ла XII.8):

где – плотность воды

– теплоемкость воды

– площадь живого сечения по теплоносителю

  1. Находим коэффициент теплопередачи (Староверов, стр. 423, табл. II.22):

по таблице:

по формуле:

  1. Площадь поверхности нагрева:

  1. Находим необходимую площадь поверхности нагрева калорифера:

где – средняя температура теплоносителя

– средняя температура нагрева воздуха, проходящего через калорифер

  1. Определяем запас площади нагрева калорифера:

  1. Определяем сопротивление калорифера проходу воздуха:

где – число последовательно расположенных калориферов;

– сопротивление одного калорифера.

  1. Проверяем значение сопротивления калорифера проходу воздуха:

Так как в цехе имеются пылевыделения, то приток воздуха необходимо делать в верхнюю зону помещения. В помещениях большой высоты возможна подача притока свободными струями.

Для дальнейших расчетов выберем приколонные четырехструйные воздухораспределители серии НРВ.

Для того, чтобы начать расчет, необходимо определить возможное количество воздухораспределителей

где – объем приточного воздуха на холодный период года, 24361 кг/ч;

– производительность одного воздухораспределителя, принимаемая (Староверов, стр. 195, табл. 8.9.)

24361/5 = 4872,2 м3/ч – расход воздуха на участке.

Выбираем 5 воздухораспределителей с номинальной пропускной способностью 5000 м3/ч. Площадь выпускного патрубка м2.

Расчет по Староверову:

Воздухораспределители следует рассчитывать по схеме 3, пользуясь нижеприведенными формулами (Староверов, табл. 8.1, стр. 178). Принять в этих формулах Кв = 1, , ξ =3 (Староверов, стр. 195)

Расчет проводим по методичке:

  1. Место входа оси плоской струи в рабочую зону примем в плоскости оси прохода. Оно представляет собой прямую, расположенную на плоскости, ограничивающей сверху рабочую зону и отстоящую на расстоянии 2 м от пола.

  2. Ось воздухоприточной струи помещаем на высоте 8 метров или 0,6 от высоты помещения. Это условие обеспечивает свободное развитие струи и не налипание ее на потолок или пол.

  3. Исходя из расположения оси струи и места расположения линии пересечения оси плоской струи с верхней границей рабочей зоны, принимаем координату x=2,5 м, а координату y=1,0 м.

Расчетная длина оси струи:

Для щели коэффициенты затухания: m=4,5 n=3,2 (Староверов, стр. 180, табл. 8.1.)

  1. Задаемся температурой притока, с учетом подогрева в вентиляторе – 11. Избыточная температура составит 20-11=9.

  2. Параметры воздуха на входе струи в рабочую зону определяем в соответствии с обязательным приложением 6:

  • Максимальная скорость на оси струи 1,8*0,2 = 0,36 м/с

  • Избыточная температура

  1. Задаемся шириной щели 0,05 м, тогда скорость приточного воздуха на выходе из щели, обеспечивающая вход струи в точку с указанными координатами, равна:

  1. Длина щели принимается равной 0,8*47,2 = 37,76. Тогда ширина щели, рассчитанная по величине притока:

Ширина щели = 0,2 м.

Типы фильтров для вентиляции

Какие фильтры нужны для удержания всего вышеперечисленного? Выделяют три типа бытовых воздушных фильтров:

1. Фильтры класса G: G1, G2, G3 и G4. Они предназначены для крупных загрязнений. Большая часть средней и мелкодисперсной пыли пройдет мимо них. Поэтому приточный вентилятор с фильтром (единичным) такого класса подходит только для экологически чистых районов.

Чем больше цифра класса, тем выше эффективность удержания. Например, фильтр G1 задерживает в среднем 60% крупных частиц, а фильтр G4 – уже до 95%. Это справедливо для фильтров любого класса.

2. Фильтры класса F: F5, F6, F7, F8 и F9. Такие фильтры «ловят» более мелкие частицы: пыль (кроме мелкодисперсной), цветочную пыльцу, микроволокна, сажу и др.

3. Фильтры класса Н (E), они же фильтры HEPA (EPA): H10 (Е10), H11 (Е11), H12 (Е12), H13 и H14. Специализация таких фильтров – мельчайшие частицы. НЕРА фильтры справляются даже с РМ2.5, против которых бессильны фильтры классов ниже.

Существуют и более эффективные фильтры: фильтры класса U, которые используются для очистки воздуха в зонах, где нужна стерильная обстановка, например, на фармацевтическом производстве. Однако для бытовой приточной или вытяжной вентиляции с фильтрацией такая очистка избыточна.

Отдельно стоит выделить угольные фильтры и адсорбционно-каталитические фильтры (АК), содержащие специальную смесь сорбентов и катализаторов. Активные вещества в таких фильтрах «цепляют» молекулы газов и удерживают их в своих порах. Подобные фильтры – хорошая защита от запахов и вредных выбросов.

СПЕЦИАЛИЗАЦИЯ ФИЛЬТРОВ:
Крупные загрязненияФильтры G
Средняя и мелкая пыльФильтры F
Мельчайшие загрязнения, PM2.5Фильтры НЕРА
Пыльца и споры плесениФильтры F
Запахи и вредные газыФильтры АК

Стоит ли покупать кварцевый обогреватель

Название изделия получили из-за того, что при производстве применяется кварцевый песок. Монолитные элементы используются в помещениях любого типа и имеют такие особенности:

  1. При производстве раствор с песком прессуется и спекается под высокой температурой, в результате чего получается цельный керамический элемент, полностью скрывающий нагревающуюся часть.
  2. В качестве нагревателя применяют нихромовую проволоку с повышенными показателями сопротивления.
  3. В час приборы потребляют 300-500 Вт, это на порядок меньше, чем большинство аналогов. При этом КПД очень высокий – около 99%. Но (по отзывам пользователей) фактический расход энергии несколько выше заявленного.
  4. При весе от 10 до 15 кг это решение сопоставимо с конвекторами и легче масляных вариантов с такой же мощностью.
  5. Температура поверхности может доходить до 98 градусов, что небезопасно, особенно если в семье есть маленькие дети.
  6. Оборудование выходит на рабочие температуры примерно за 20 минут.
  7. Обогрев производится как за счет теплового, так и за счет инфракрасного излучения, которое дает нихром. Поэтому прогреваются и поверхности вокруг, что повышает эффективность работы.

В целом, это решение неплохо подходит для обогрева, так как сочетает два разных вида оборудования. По эффективности оно не хуже конвекторов и масляных обогревателей, а по энергопотреблению предпочтительнее. Единственная проблема – сильно нагревающаяся поверхность.

Инфракрасные обогреватели

К инфракрасным моделям большинство людей относятся все еще с опаской. Их принцип работы чем-то похож на солнце.

Инфракрасное излучение ламп нагревает не воздух в помещении, а расположенные в нем предметы, которые затем отдают тепло в окружающее пространство. Нагрев происходит за счет невидимых лучей в инфракрасном спектре.

К такому нужно привыкнуть. Ощущения под самим обогревателем будут такими, как будто сидите возле печки. Один бок жарится, а другой – комнатной температуры.

Чтобы обезопасить себя от воздействия такого оборудования, соблюдайте элементарные правила пользования.

Если очень долго находиться под таким обогревателем, можно почувствовать головную боль и усталость.

Кроме того, инфракрасный спектр в избыточных количествах может негативно влиять на кожу. Такой луч способен проникнуть на глубину до нескольких сантиметров под кожу и только потом отдавать тепло изнутри, направляясь к наружной поверхности кожного покрова.

Все здесь зависит от мощности источника и продолжительности нахождения под ним. Если же соблюдать инструкцию, то опасаться такого излучения не стоит. Как же себя обезопасить?

Самое главное, выдержать минимальное расстояние от инфракрасного обогревателя. Оно должно быть не менее 2 метров.

К достоинствам инфракрасной технологии можно отнести:

мгновенное тепло

практически полное отсутствие потери кислорода

отсутствие запаха

бесшумность

И как показывают многочисленные тесты, такой обогрев самый пожаробезопасный. Даже если прямо под инфракрасным обогревателем размесить новогоднюю елку (вплоть до ее касания защитного экрана), поджечь ее будет проблематично.

Только не вздумайте целенаправленно повторять такие эксперименты у себя дома. Обогреватель обогревателю рознь, и соблюдение правил ТБ должно быть на первом месте.

Устройство имеет небольшую массу. Его с одинаковым успехом можно разместить как на стенах или потолке (подвесить на монтажных цепях как люминесцентный светильник).

Так и зафиксировать на специальных ножках.

Однако имеются и свои особенности. Один из недостатков – ограничение эффективности прибора углом рассеивания.

Выйдете за эту зону и сразу почувствуете разницу температуры в несколько градусов. ИК обогреватели с самого начала и создавались именно для прогрева только рабочих зон в помещениях без отопления.

Чтобы улучшить эффективность прогрева при подвесе на потолке, можно покрасить полы в темный цвет.

Бывают и модели из пластин керамики, которые тоже испускают инфракрасное тепловое излучение, плюс красиво смотрятся.

Они обладают небольшой мощностью и стойки к воздействию влаги. Поэтому их спокойно можно использовать в ванной.

Как делается приточная вентиляция воздуха с подогревом своими руками

Для тех, кто имеет желание сделать приточную вентиляцию в частном доме своими руками, можно сказать, что это не сложно. Главное – подойти к процессу очень тщательно и не торопиться. Если неправильно создать чертеж и произвести расчеты, устройство будет работать неверно, что скажется на воздухе внутри помещения и на температуре.

Схемы и чертежи

Прежде чем приступить к монтажу устройства, необходимо на бумаге полностью осуществить свой замысел. Чертеж должен быть со всеми размерами и направлениями, так будет удобней монтировать готовую систему и производить расчеты. На клапанах обязательно пометьте наличие решеток и заслонок. В схеме должны быть учтены следующие нюансы:

  1. Движение воздуха должно идти от чистых помещений к загрязнённым, то есть от спальни к кухне и санузлу.
  2. Клапан приточной вентиляции с подогревом должен располагаться во всех комнатах и помещениях, где нет вытяжки.
  3. Каналы вытяжки должны быть везде одинакового размера, без расширений или сужений.

Расчеты

Для того чтобы устройство полностью выполняло свои функции, необходимо как можно точнее рассчитать его мощность. Для этого понадобятся все параметры помещения. В том числе количество этажей, площадь комнат,  планировка помещения, количество людей, которые одновременно могут там находиться, а также наличие техники в виде компьютеров или станков.

Монтаж

Для того чтобы смонтировать приточную вентиляцию, необходимо иметь следующие инструменты:

  1. Перфоратор.
  2. Гаечные ключи.
  3. Кувалда.
  4. Шуруповерт.
  5. Молоток.
  6. Трещоточный ключ.
  7. Струбцина.

В первую очередь, необходимо приготовить место и выбрать размер отверстия. При помощи алмазного бура или перфоратора нужно просверлить отверстие с уклоном в сторону улицы. Затем в эту дыру вставляется труба. По диаметру она должна быть больше, чем диаметр вентилятора.

После этого устанавливается вентилятор, а все щели между трубой и стеной запениваются. Затем прокладываются каналы для проводки. В некоторых помещениях проводку удобно соединить со включателем, это даст возможность автоматически включаться системе вентиляции после того, как в помещении зажигается свет.

В финале устанавливаются все оставшиеся детали, в том числе шумопоглотители, датчики температуры и все фильтры

Важно постоянно сверяться со схемой, чтобы не допустить ошибок при монтаже. На концы системы крепятся решетки

В итоге всю систему необходимо проверить

Это сделать просто: нужно к решеткам поднести лист бумаги. Если он колышется хотя бы незначительно, значит, вентиляция работает

В итоге всю систему необходимо проверить. Это сделать просто: нужно к решеткам поднести лист бумаги. Если он колышется хотя бы незначительно, значит, вентиляция работает.

Важно отметить, что в последнее время люди все больше загораживаются от постороннего шума. В итоге, вместе со звуками, мы прекращаем доступ свежего воздуха в помещение

Это провоцирует и аллергические реакции, и болезни верхних дыхательных путей

Это провоцирует и аллергические реакции, и болезни верхних дыхательных путей.

Поэтому в любом помещении, будь то офис или квартира, должна стоять вентиляция. А чтобы при этом не замерзать, вентиляцию следует устанавливать с подогревом. Тогда будет и здоровью полезно, и тепло.

Выводы и полезное видео по теме

В видео ниже предоставлены рекомендации по выбору приточной вентиляции с подогревом и рассмотрены ключевые различия между наборной вентиляционной системой и моноблоком:

Автор следующего видео рассматривает преимущества и недостатки приточной вентиляционной системы и популярного среди владельцев квартир бризера:

Воздухообмен и вывод углекислого газа из помещения являются основой здорового микроклимата в квартире. Осуществить максимально полноценную циркуляцию воздуха можно с помощью приточной вентиляционной системы. Эффективный подогрев воздуха, поступающего из приточной вентиляции, практически незаменим в условиях нашего климата

Источники

  • https://AeroClima.ru/ventilyaciya/s-obogrevom/
  • https://sovet-ingenera.com/vent/montazh/podogrev-pritochnoy-ventilyatsii-v-kvartire.html
  • https://tion.ru/ventilyaciya/s-podogrevom-vozduha/
  • https://TopVentilyaciya.ru/ventilyaciya/pritochnaya-ventilyatsiya-s-podogrevom.html
  • https://tion.ru/ventilyaciya/ventilyatsiya-s-filtraciey/
  • https://sovet-ingenera.com/tech/klimat/pritochnaya-ventilyatsiya-s-podogrevom-svoimi-rukami.html
  • https://stroycollege12.ru/pritocnaa-ventilacia-s-podogrevom/
  • https://okcomfort.com/elektrika/ventilyacia/s-podogrevom-vozduha-svoimi-rukami.html
  • https://dom-naveka.ru/remont-v-kvartire/ventilyaciya-s-podogrevom.html
  • https://otivent.com/pritochnyj-klapan-v-stenu
Поделитесь в социальных сетях:FacebookX
Напишите комментарий