Что представляет собой бытовая солнечная батарея
Гелиоэнергетика – это настоящая находка для получения дешевой электроэнергии. Однако даже одна солнечная батарея стоит достаточно дорого, а для того чтобы организовать эффективную систему их нужно немалое количество. Поэтому многие решаются собрать солнечную батарею своими руками. Для этого нужно уметь немного паять, так как все элементы системы собираются в дорожки, а потом крепятся на основание.
Чтобы понять, подходит ли гелиостанция для ваших нужд, надо понимать, что такое бытовая солнечная батарея. Само устройство состоит из:
- солнечных панелей
- контроллера
- аккумулятора
- инвертора
Если устройство предназначено для отопления дома, в комплект будут также включены:
- бак
- насос
- комплект автоматики
Солнечные панели — прямоугольники 1х2 м либо 1,8х1,9 м. Для обеспечения электричеством частного дома с 4-мя жильцами надо 8 панелей (1х2 м) либо 5 панелей (1,8х1,9 м). Устанавливают модули на крышу с солнечной стороны. Угол наклона крыши 45° с горизонтом. Существуют вращающиеся солнечные модули. Принцип работы солнечной батареи с поворотным механизмом аналогичен стационарной, но панели поворачиваются вслед за солнцем благодаря фоточувствительным датчикам. Стоимость их выше, но КПД достигает 40%.
Конструкция стандартных солнечных батарей следующая. Фотоэлектропреобразователь состоит из 2 слоев n и p типа. n-слой изготавливают на основе кремния и фосфора, что приводит к избытку электронов. p-слой делают из кремния и бора, в результате чего образуется избыток положительных зарядов («дыр»). Слои помещают между электродов в таком порядке:
- покрытие против бликов
- катод (электрод с отрицательным зарядом)
- n-слой
- тонкий разделительный слой, препятствующий свободному переходу заряженных частиц между слоями
- p-слой
- анод (электрод с положительным зарядом)
Фотоэлектрические модули производят с поликристаллической и монокристаллической структурами. Первые отличаются большим КПД и высокой стоимостью. Вторые – дешевле, но менее эффективны. Мощности поликристаллических достаточно для освещения/отопления дома. Монокристаллические используются для генерации малых порций электричества (в качестве резервного источника энергии). Существуют гибкие солнечные батареи на основе аморфного кремния. Технология находится в процессе модернизации, т.к. КПД аморфной батареи не превышает 5%.
Экономическая обоснованность
Сроки окупаемости солнечных панелей посчитать несложно. Умножьте суточное количество производимой энергии в сутки на количество суток в году и на срок эксплуатации панелей без снижения мощности — 30 лет. Рассмотренная выше электроустановка способна генерировать в среднем от 52 до 100 кВт·ч в сутки в зависимости от продолжительности светового дня. Среднее значение составляет около 64 кВт·ч. Таким образом, за 30 лет электростанция в теории должна выработать 700 тыс. кВт·ч. При одноставочном тарифе в 3,87 руб. и стоимости одной панели около 15 000 руб, затраты окупятся за 4–5 лет. Но реальность более прозаична.
Дело в том, что декабрьские значения солнечной радиации меньше среднегодовых примерно на порядок. Поэтому для полностью автономной работы электростанции зимой требуется в 7–8 раз больше панелей, чем летом. Это существенно увеличивает вложения, но уменьшает срок окупаемости. Перспектива введения «зеленого тарифа» выглядит вполне ободряюще, но даже на сегодняшний день можно заключить договор на поставку электроэнергии в сеть по оптовой цене, которая втрое ниже розничного тарифа. И даже этого достаточно, чтобы выгодно продавать 7–8 кратный излишек выработанной электроэнергии в летний период.
Конструктивные особенности
Традиционные литий-ионные аккумуляторы с катодом на основе соединений кобальта считаются одним из самых мощных малогабаритных источников энергии. Высокая плотность заряда, отсутствие эффекта памяти, возможность применения в различных устройствах, включая и мобильные.
Все это хорошо. Но, применение в литиевых АКБ кобальта существенно повышает их стоимость. Не обратить внимания на такой фактор просто невозможно. Если для батарейки мобильного телефона это некритично, то для устройств большой емкости стоимость возрастает ощутимо. Кроме того, повышенной безопасностью элементы такого класса никогда не отличались. Особенно первые модели, появившиеся на рынке. Такие аккумуляторные батареи для ИБП могли вспыхнуть или взорваться при нарушении технологии подзарядки (перезаряд), они плохо держали емкость в условиях пониженных температур.
Все это и послужило толчком для развития технологии в направлении поиска эффективной и более доступной по стоимости замены кобальту. Результатом этих работ и стал литиевый аккумулятор нового поколения LiFePO4.
Литий-железофосфатные ионные аккумуляторы имеют следующую конструкцию:
- Герметичный цилиндрический или призматический корпус с вертикальной компоновкой. Благодаря такому решению появилась возможность скомпоновать батарею, занимающую меньше места.
- «Сухая» конструкция литий-ионной аккумуляторной батареи обеспечена применением желеобразного сепаратора. Высокая пористость материала позволяет насытить его электролитом на основе солей лития.
- Основное отличие от традиционных модификаций, реализованное в LiFePO4 литиево-ионной батарее, железофосфатное покрытие катода. Именно это техническое решение позволило снизить стоимость и уменьшить потенциальную опасность, которой отличались ионные аккумуляторы предыдущих поколений.
- Для повышения безопасности в устройстве реализована система предохранительных клапанов, позволяющая снизить избыточное давление внутри корпуса, вызванное увеличенным газообразованием при перезаряде.
- Литиевые аккумуляторы относятся к низковольтным источникам питания. Напряжение заряда не превышает 3,6-3,9 В. Но стабильное напряжение разряда (3,2 В на протяжении разряда до 20% от номинальной емкости) позволяет комплектовать 12-вольтные блоки без ухудшения эксплуатационных характеристик.
Применение подобных технических решений обеспечило высокую плотность заряда батареи. Несмотря на небольшой объем, емкость отдельных модификаций достигает 770 А*ч.
Какой АКБ выбрать для солнечной электростанции
Производители предлагают большой выбор солнечных батарей и аккумуляторов, запутаться в их характеристиках достаточно просто. Вначале следует определиться с ценовыми показателями, а затем выяснить точные характеристики всех вариантов.
От количества солнечных систем зависит необходимое количество АКБ
Рейтинг лучших бюджетных вариантов
Среди недорогих, но достаточно практичных АКБ следует выделить несколько наиболее привлекательных своими характеристиками:
- Casil CA 12120 – напряжение АКБ 12 вольт, а емкость 12 ампер*часов, тип батареи AGM, а вес составляет 4 кг;
- Azbist ASAGM-12400M6 – при напряжении в 12 В емкость этой АКБ составляет 40 ампер*часов, в производстве использована технология AGM, но вес 11,8 кг, максимальный ток разряда составит 300 ампер, а заряда 12 А, при саморазряде не более 3%;
- Ventura VG 12-65 GEL – тип батареи гелевая, напряжение 12 вольт, а емкость 65 Ач, вес 22 кг, а срок службы, гарантированный производителем 15 лет или тысяча циклов;
- Pulsar HTL12-55 – гелевая система обладает напряжением 12 вольт и емкостью 55 ампер-часов, масса АКБ составит 16 кг;
- Ostar OP1270 – один из наиболее дешевых вариантов АКБ для зеленых систем, при емкости 7 Ач имеет рабочее напряжение 12 В и создан на основе AGM технологии, вес всего 2,1кг.
Приобретая самый дешевый аккумулятор для солнечной панели обязательно следует учитывать используемую нагрузку. Для большого количества электроприборов этот вариант не подойдет.
Рейтинг лучших универсальных вариантов
Самыми популярными аккумуляторами для солнечных батарей являются приборы средней ценовой категории, они обладают высокими характеристиками при достаточно приемлемой цене. Особого внимания заслуживают следующие модели:
- Challenger A12-80 – модель не на много дороже большинства образцов из низкого сегмента, но емкость уже составляет 81 Ач при напряжении 12 В, вес устройства 24 кг, а работать сможет при температурах от -20 до +60 градусов по Цельсию;
- EverExceed 8G27M-12100MG – гелевый АКБ с напряжением 12 вольт и емкостью 100ампер-часов, рассчитан на 1000 циклов, а максимально низкая температура достигает -40 С;
- Azbist ASGEL-121000M8 – сто ампер-часов и все те же 12 вольт, тип АКБ – гелевый, а максимальный ток заряда составляет 1000 ампер за 5 секунд;
- Logicpower LP-MG12V150AH – емкость увеличена до 150 Ач, а в качестве наполнения используется мультигель, вес составит 57 кг.
Универсальные батареи получится использовать в различных климатических условиях, даже при достижении низких температур.
Рейтинг лучших премиальных вариантов
Работа в экстремальных климатических условиях возможна с использованием премиум сегмента аккумуляторных батарей. Среди них наиболее интересными и мощными моделями считают:
- Siap 6PT180 – работает на жидком электролите и имеет емкость 180 Ач, с ресурсом до 1200 циклов .масса составляет 64 кг;
- B.B.Battery BP230-12/B9 – для производства используется AGM технология, а емкость составляет 230 Ач, максимальный ток разряда составит 800 ампер, а вес 72,5 кг;
- Pulsar HTL12-300 – гелевая система обладает номинальной емкостью 300 Ач, гарантированный срок эксплуатации 15 лет, а вес 80 кг;
- EverExceed ST-6400 – работает на AGM технологии, а емкость его 443 Ач. Главная особенность в удвоенном циклическом ресурсе, все 600 возможных циклов обладают глубиной разряда 100%, а минимальная рабочая температура составляет -40 градусов Цельсия, вес аккумулятора составляет всего 55 кг.
Современные технологии не стоят на месте и на рынке постоянно появляются более мощные новинки, обладающие улучшенными характеристиками.
Подбор контроллера по напряжению и току солнечных батарей и акб
Большинство выпускаемых солнечных батарей имеет номинальное напряжение 12 или 24 вольта. Это сделано для того чтобы можно было заряжать аккумуляторные батареи без дополнительного преобразования напряжения. Аккумуляторные батареи появились значительно раньше солнечных батарей и имеют распространённый стандарт номинального напряжения на 12 или 24 вольта. Соответственно большинство контроллеров для солнечных батарей выпускается с номинальным рабочим напряжением равным 12 или 24 вольта, а также двухдиапазонные на 12 и 24 вольта с автоматическим распознаванием и переключением напряжения.
Номинальное напряжение на 12 и 24 вольта достаточно низкое для мощных систем. Для получения необходимой мощности приходится увеличивать количество солнечных батарей и аккумуляторов, соединяя их в параллельные контуры и значительно увеличивая силу тока. Увеличение силы тока ведет к нагреву кабеля и электрическим потерям. Необходимо увеличивать толщину кабеля, возрастает расход металла. Также необходимы мощные контроллеры, рассчитанные на высокий ток, такие контроллеры получаются очень дорогими.
Чтобы исключить возрастание тока, контроллеры для мощных систем делают для номинально рабочего напряжения на 36, 48 и 60 Вольт. Стоит заметить, что напряжение контроллеров кратно по напряжению 12 вольтам, для того чтобы можно было подключать солнечные батареи и акб в последовательные сборки. Контроллеры с кратным напряжением выпускаются только для технологии зарядки ШИМ.
Как видно ШИМ контроллеры выбираются с напряжением кратным 12 вольтам, причем в них входное номинальное напряжение от солнечных батарей и номинальное напряжение контура подключенных аккумуляторов должно быть одинаковым, т.е. 12В от СБ – 12В к АКБ, 24В на 24, 48В на 48В.
У контроллеров MPPT входное напряжение может быть равным или произвольно выше в несколько раз без кратности 12 Вольтам. Обычно MPPT контроллеры имеют входное напряжение от солнечных батарей от 50 Вольт для простых моделей и до 250 вольт для мощных контроллеров. Но следует учесть, что опять же производители указывают максимальное входное напряжение, и при последовательном подключении солнечных батарей следует складывать их максимальное напряжение, или напряжение холостого хода. Проще говоря: входное максимальное напряжение любое от 50 до 250В, в зависимости от модели, номинальное или минимальное входное при этом будет 12, 24, 36 или 48В. При этом выходное напряжение для заряда АКБ у контроллеров MPPT стандартное, часто с автоматическим определением и поддержкой напряжений на 12, 24, 36 и 48 Вольта, иногда 60 или 96 вольт.
Существуют серийные промышленные очень мощные MPPT контроллеры с входным напряжением от солнечных батарей на 600В, 800В и даже 2000В. Данные контроллеры также можно свободно приобрести у российских поставщиков оборудования.
Окромя выбора контроллера по рабочему напряжению, контроллеры следует выбирать по максимальному входному току от солнечных батарей и максимальному току заряда акб.
Для ШИМ контроллера, максимальный входной ток от солнечных батарей будет переходить в зарядный ток АКБ, т.е. контроллер не будет заряжать большим током, чем выдают подключенные к нему солнечные батареи.
В MPPT контроллере все иначе, входной ток от солнечных батарей и выходной ток для заряда акб – это разные параметры. Эти токи могут быть равными, если номинальное напряжение подключенных солнечных батарей равно номинальному напряжению подключенных акб, но тогда теряется суть преобразования MPPT, и эффективность контроллера уменьшается. В MPPT контроллерах номинальное входное напряжение от солнечных батарей должно быть выше номинального напряжения подключенных АКБ оптимально в 2-3 раза. Если входное напряжение выше ниже чем в 2 раза, к примеру, в 1,5 раза, то будет меньшая эффективность, а выше более чем в 3 раза, то будут большие потери на разницу преобразования напряжения.
Соответственно входной ток всегда будет равен или ниже максимальному выходному току заряда АКБ. Отсюда следует, что MPPT контроллеры необходимо выбирать по максимальному зарядному току АКБ. Но чтобы не превысить данный ток, указывается максимальная мощность подключаемых солнечных батарей, при номинальном напряжении контура подключенных АКБ. Пример для контроллера заряда MPPT на 60 Ампер:
- 800Вт при напряжении АКБ электростанции 12В;
- 1600Вт при напряжении АКБ электростанции 24В;
- 2400Вт при напряжении АКБ электростанции 36В;
- 3200Вт при напряжении АКБ электростанции 48В.
Следует заметить, что данная мощность при 12 вольт указана для зарядного напряжения от солнечных панелей в 13 — 14 Вольт, и кратна для остальных систем с напряжениями на 24, 36 и 48вольт.
Солнечно аккумуляторная батарея: основные критерии подбора оптимального варианта
Для того, чтобы подобрать оптимальную модель аккумулятора для работы с батареей, необходимо ознакомится с некоторыми составляющими, позволяющими принять единственно правильное решение:
Емкость аккумулятора
Емкость аккумулятора – это его главный технический показатель. Этот параметр целиком и полностью зависит от того, где именно будет установлена электростанция и для каких бытовых нужд она будет предназначена. Если аккумуляторы необходимы для поддержки системы резервного питания, то емкость должна быть рассчитана, исходя из того, каким будет 100% цикл разряда.
А поскольку такой аккумулятор для солнечных батарей будет разряжаться очень медленно и редко, для этих нужд может быть использован самый обычный автомобильный аккумулятор, способный выдержать до 200 циклов разрядки. Однако, если перед ним поставлены определенные задачи – например, обеспечить круглосуточную работу водяного насоса и параллельно при этом осветить весь дом, то стоит учесть, как саму мощность насоса, так и некоторых энергосберегающих светильников.
Солнечно аккумуляторная батарея: тип и марка
Определившись с емкостями, нужно подобрать внешний универсальный тип или марку аккумуляторной батареи. Как правило, производитель всегда указывает в инструкции или описании номинальную емкость батарей для различных временных условий использования. Для 10 или 20-и часовой работы с батареей она, конечно различна, но при условиях одинакового номинала аккумулятор, где указан 10-часовой номинал будет работать дольше, чем 20-часовой.
Вес
При одинаковой емкости, аккумуляторы могут быть абсолютного разного веса. Основную часть массы составляет активный свинец, а поэтому тяжелые аккумуляторные батареи, как правило, работают с более высокими качественными показателями и характеристиками.
Критерии выбора аккумулятора для солнечных батарей
Каждый, кто имеет цель обеспечить дом электроэнергией с помощью солнечных батарей, задается вопросом, какие аккумуляторы являются наилучшим и наиболее подходящим вариантом для создания солнечной электростанции. Мы поможем определить, какой аккумулятор выбрать в этом случае.
При выборе модели батареи необходимо руководствоваться соотношением указанных характеристик к условиям использования
Параметры, на которые следует обращать внимание при покупке, описаны ниже
- Ресурс циклов «заряда-разряда». Эта характеристика позволяет предположить приблизительный срок эксплуатации батареи.
- Показатель скорости процесса зарядки и разряда. Этот показатель также влияет на период службы устройства.
- Показатель саморазряда устройства. Это также влияет на изнашиваемость аккумулятора.
- Объем емкости аккумулятора. Данный параметр помогает определить мощность, с которой может работать прибор.
- Максимальное значение тока при заряде и разряде. Значение при заряде определяет, какой ток может принять прибор. Значение при разряде определяет, какой ток может отдать устройство без ущерба для функционирования.
- Вес и габариты устройства. Эти параметры необходимы, чтобы составить схему подключения аккумуляторов, а также определить их местоположение.
- Условия использования АКБ. Это следует учитывать по причине того, что разные модели работают при разных температурных режимах.
- Обслуживание. В инструкции должно быть указано, каких мер по обслуживанию требует каждая конкретная модель. Но это не является основным параметром, который может повлиять на ваш выбор.
Для полноценного функционирования солнечной электростанции следует учитывать технические характеристики всех составляющих этой системы. Надеемся, что вышеизложенная информация поможет вам выбрать подходящий аккумулятор для системы энергоснабжения с помощью солнечной энергии.
Как вам статья?
Мне нравитсяНе нравится
Повышение рабочего напряжения батареи
Аккумуляторы электрической энергии имеют различное рабочее напряжение. Варьироваться оно может в очень широком диапазоне: от 0,5 до 48 Вольт. В то же время, для обеспечения автономного питания приборов, запуска двигателей внутреннего сгорания, питания электроприводной техники требуется другой диапазон напряжений. Повысить рабочее напряжение автономного источника тока можно последовательным соединением нескольких аккумуляторов в батарею.
Схемы и формулы при последовательном соединении батарей
При последовательном соединении коммутируются разнополярные клеммы аккумулятора. Плюсовой вывод предыдущего устройства соединяется с минусовым выводом последующего. Суммарное рабочее напряжение батареи при таком способе будет равно сумме рабочих напряжений коммутированных источников тока. Это значит, что для получения АКБ с рабочим напряжением 12 В необходимо последовательно соединить 4 трехвольтных источника либо 10 аккумуляторов с рабочим напряжением 1,2 В. Емкость скомплектованной последовательным соединением источников не изменяется и остается равной емкости каждого включенного в схему аккумулятора.
Очевидным и наглядным примером такого способа комплектации батареи могут служить автомобильные АКБ. В них отдельные источники, именуемые банками, объединены в общем корпусе и последовательно соединены свинцовыми шинами. Выбор в качестве материала для соединительных шин свинца объясняется просто: аккумуляторные электроды также изготавливаются из свинца. Шины, интегрированные в коммуникационную схему, соединяются с электродами на молекулярном уровне, а не механически. Это позволят избежать возникновения электрохимических коррозионных процессов.