Расчет мощности солнечных батарей: сколько нужно для частного дома, подробная методика подсчета

Какие солнечные электростанции подходят для частного дома

Полностью автономные солнечные электростанции созданы для домов, не подключенных к централизованному электроснабжению. Днем автономная система снабжает дом электричеством и заряжает аккумуляторы, которые возьмут на себя обеспечение хозяйства энергией в ночное время.   

Сетевые солнечные электростанции не накапливают электроэнергию, они работают параллельно с внешней сетью по приоритетной схеме. Дом в основном снабжается от солнечных модулей, а внешняя сеть используется только ночью, при плохой погоде или при недостатке мощности. Нередко ими компенсируют и недостаток выделенной мощности – это распространенная проблема в дачных поселках, сильно ограничивающая степень комфорта в загородном доме. 

Автономная СЭС при необходимости может быть легко модернизирована до автономно-гибридной, которая будет сочетать преимущества обоих описанных выше типов. Этот тип станции может работать параллельно с сетью, обеспечивая функцию резервного питания на случай отключения централизованной подачи. 

Подключение панелей своими руками

Перед тем, как подключить солнечную батарею, необходимо ознакомиться с ее схемой и параметрами, а также учесть:

  • окружающую обстановку. Место расположения панелей не должно затеняться рядомстоящими деревьями и другими строениями;
  • угол наклона. Оптимальная энергоэффективность достигается при углах наклона панелей в пределах 30–45⁰. Если скаты крыши не соответствуют данным параметрам, используются каркасы или часть кровли подвергается демонтажу;
  • ориентацию. Для максимальной эффективности, панели должны находиться под прямыми солнечными лучами большую часть светового дня, что соответствует южному направлению;
  • инсоляцию. Параметр представлен уровнем солнечного излучения на конкретную зону земной поверхности. Зависит от времени года. Позволяет определить на что хватит энергии батарей в тот или иной сезон. Показатель инсоляции прямо пропорционален размеру и количеству необходимых для дома панелей;
  • вес. Собранные в батарею солнечные панели обладают довольно большой массой, что может негативно отразиться на состоянии кровли и стропильной системы;
  • свободный доступ. При правильном и надежном монтаже уход за солнечными панелями сводится к очистке поверхностей от загрязнений и снега.

При установке солнечных панелей на гладкую крышу необходимо позаботиться о воздушной прослойке. Недостаточный отвод тепла может вывести систему из строя.

Как рассчитать сколько кВт нужно

Для расчета мощности солнечных батарей необходимо обладать информацией о потребляемой электроэнергии. Средний показатель, измеряемый в кВт*ч, можно вычислить по ежемесячным коммунальным платежкам.

Паспортная мощность панелей соответствует идеальным условиям (чистое небо и прямое падение солнечных лучей). Небольшая облачность и дымка уменьшает эффективность в 2–3 раза. При пасмурной погоде, производимая энергия снижается в 15–20 раз. При этом на 100% батареи работают не более 7 часов в день, а утром и вечером этот показатель падает до 20–30%.

Для киловаттного массива месячная выработка электроэнергии вычисляется по формуле: 1х7х30=210 кВт. Энергией утренних и вечерних часов можно пренебречь за счет возможной облачности.

Чтобы определиться с мощностью солнечных батарей:

  • подсчитывается среднесуточное потребление электроэнергии;
  • делится на 7;
  • суммируется с 40%, которые относятся к потерям в аккумуляторах и инверторе;
  • при PWM контроллере увеличивается еще на 20%.

В реальности формула выглядит следующим образом: Х:30:7+Х:30:7х0,4+Х:30:7х0,2. Где Х – потребляемая электроэнергия за месяц. Полученный результат соответствует летнему сезону. Поскольку в осенне-весенний периоды эффективность солнечных батарей снижается, данный показатель необходимо увеличить еще на 50%. В зимнее время в помощь солнечным батареям необходимо использовать бензо- или ветрогенератор такой же мощности.

Критерии выбора солнечных батарей

Для того чтобы понять, как правильно выбрать солнечные панели для дома, дачи или другого объекта, вам нужно четко сформулировать задачу, которую собираетесь решить с помощью такой установки

Важно, чтобы по своей энергоотдаче солнечная батарея покрывала потребности объекта в выработке электроэнергии. Задайте себе вопрос, в вашем случае нужна большая солнечная электростанция или достаточно портативных солнечных батарей и как их выбрать? Необходимо учесть также тип и месторасположение объекта, для которого будете использовать солнечные панели

Приобретая гелиопанель, подсчитайте заранее номинальную мощность всех электроприборов, которые планируется питать от этого источника энергии, определитесь с местом установки самой панели и ее допустимыми габаритными размерами.

При выборе солнечных панелей учитывайте следующие критерии.

Мощность

Это один из важнейших показателей эффективности работы солнечной батареи, влияющий на выбор того или иного устройства
При этом важно обращать внимание на такой параметр, как допустимая погрешность номинальной мощности. Эта величина показывает, насколько реальное значение мощности может отклоняться от указанных значений в техпаспорте устройства, что влияет на конечную производительность панели.

Размеры панели
Во многом зависят от того, какой объект нужно обеспечить электроэнергией

Как выбрать солнечные панели для дачи – это один вопрос, совсем другой вопрос, как подобрать солнечные панели для дома, а если речь идет о промышленном или сельскохозяйственном объекте – это вообще отдельная задача, решать которую надо со специалистами. В любом случае, размеры солнечной батареи напрямую связаны с мощностью устройства – чем больше мощность, тем больше размеры солнечной батареи. К примеру, панель мощностью 300 Вт имеет гораздо большие размеры, чем панель на 100 Вт – это обязательно надо учитывать. Поэтому при выборе панели определенной мощности важно заранее понимать размеры места, где она будет монтироваться – чтобы его было достаточно или была возможность его расширить при необходимости.

Тип солнечной панели. Тоже связан с особенностями работы панели и влияет на ее габаритные размеры. Существует несколько типов панелей: поликристаллические, монокристаллические, тонкопленочные. Что выбрать – зависит от того, где и как вы планируете использовать солнечную панель. Например, выбирать для частного дома нужно один тип солнечных батарей, для предприятий или объектов общественного использования – другой.

Коэффициент полезного действия (КПД) или эффективность работы ФЭП (фотоэлементов). Показывает, какое количество в целом поступившей солнечной энергии на плоскость панели затем преобразуется в электрический ток. КПД отчасти зависит от типа панели, хотя между моно- и поликристаллическими панелями разница в КПД небольшая. Существенное значение этот показатель будет иметь в том случае, когда площадь для установки панели ограничена. В таком случае, выбрав солнечные батареи с более высоким КПД, можно уменьшить площадь их установки.

Цена. Самыми недорогими и доступными по стоимости считаются тонкопленочные модели панелей. Однако по продуктивности они существенно уступают другим видам панелей и при гораздо большей площади генерируют меньшее количество энергии. Наиболее эффективными и самыми компактными по размерам признаны монокристаллические солнечные панели, но они являются и самыми дорогими. Их однозначно рекомендуют выбирать в случае, когда бюджет не ограничен. Поликристаллические панели на сегодняшний день считаются наиболее оптимальным выбором по сочетанию цены, параметров и результативности. Они лучше работают в пасмурную погоду, им присуща неплохая производительность, гармоничная комбинация эффективности и экономичности.

От чего зависит мощность солнечный батарей

Конструкция гелиобатареи — не единственный фактор, определяющий эксплуатационные показатели комплекса. В процесс вмешиваются внешние факторы, которые уменьшают возможности комплекса. Они воздействуют на работу оборудования поодиночке и сообща, снижая эффективность и уменьшая показатели гелиостанции.

Мощность солнечной батареи — это количество электроэнергии, которое она способна выдать в единицу времени. Это величина конечная, то есть рассчитанная по максимальному значению и имеющая определенный предел. Известно, что солнечная постоянная — 1 кВт на 1 м². Эта величина измерена в определенных условиях, обозначает количество энергии, падающее на земную поверхность в солнечный день при температуре 25° и постоянно вертикальном падении на поверхность. На практике получение полного расчетного объема энергии невозможно.

Характеристики самой качественной солнечной панели ограничены. Ее КПД не превышает 24 %, поэтому максимальной мощностью, полученной от 1 м² принимающей поверхности может быть 0.24 кВт. Это в идеальных условиях и с постоянной коррекцией положения поверхности относительно Солнца. На практике таких условий не бывает. В ситуацию вмешиваются погодные, климатические и сезонные условия. Возможны целые пасмурные недели, длительность светового дня в летний и зимний период существенно отличается.

Кроме этого, температура также влияет на способность солнечных элементов производить энергию — ее выработка значительно падает, как только температура поднимается выше +25°. Это означает, что в ясный летний день, когда мощность солнечных батарей на каждый квадратный метр должна быть максимальной, получить ожидаемый результат не удастся из-за сильного нагрева фотоэлементов. Поэтому, производя расчет солнечной электростанции, надо делать поправки на сезонные условия, длительность дня и прочие природные факторы.

Следующий фактор, который необходимо учесть при выполнении расчета — деградация гелиопанелей. Этот показатель у разных моделей отличается, есть образцы, сохраняющие до 90 % рабочих качеств даже через 20–25 лет эксплуатации. однако, у большинства панелей деградация происходит равномерно и пропорциональна длительности использования.

Кроме этого, расчет количества солнечных панелей необходимо делать с учетом потерь на дополнительном оборудовании — инвертор имеет КПД около 92–96 (и это одна из лучших моделей). Кроме этого, неизбежны потери на АКБ и контроллере, которые достигают 40 % и также снижают общие параметры комплекса. Сами приборы расходуют энергию на питание собственных плат. Поэтому, полный и точный расчет солнечных панелей — задача крайне сложная, требующая экспериментального подтверждения.

Конструктивные особенности

В приэкваториальных районах Земли средний поток солнечной энергии составляет в среднем 1,9 кВт/м2. В средней полосе России он находится в пределах 0,7~1,0 кВт/м2. КПД классического кремниевого фотоэлемента не превышает 13%.

Как показывают опытные данные, если прямоугольную пластину направить своей плоскостью на юг, в точку солнечного максимума, то за 12‑часовой солнечный день она получит не более 42% суммарного светового потока из‑за изменения угла его падения.

Это означает, что при среднем солнечном потоке 1 кВт/м2, 13% КПД батареи и её суммарной эффективности 42% удастся получить за 12 часов не более 1000 x 12 x 0,13 x 0,42 = 622,2 Втч, или 0,6 кВтч за день с 1 м2. Это при условии полного солнечного дня, в облачную погоду — значительно меньше, а в зимние месяцы эту величину нужно разделить ещё на 3.

Учитывая потери на преобразование напряжения, схему автоматики, обеспечивающую оптимальный зарядный ток аккумуляторов и предохраняющую их от перезаряда, и прочие элементы можно принять за основу цифру 0,5 кВтч/м2. Этой энергией можно в течение 12 часов поддерживать ток заряда аккумулятора 3 А при напряжении 13,8 В.

То есть для заряда полностью разряженной автомобильной батареи ёмкостью 60 Ач потребуется солнечная панель в 2 м2, а для 50 Ач — примерно 1,5 м2.

Для того чтобы получить такую мощность можно приобрести готовые панели, выпускающиеся в диапазоне электрических мощностей 10~300 Вт. Например, одна 100 Вт панель за 12‑ти часовой световой день с учётом коэффициента 42% как раз обеспечит 0,5 кВтч.

Такая панель китайского производства из монокристаллического кремния с очень неплохими характеристиками стоит сейчас на рынке около 6400 р. Менее эффективная на открытом солнце, но имеющая лучшую отдачу в пасмурную погоду поликристаллическая — 5000 р.

При наличии определённых навыков в монтаже и пайке радиоэлектронной аппаратуры можно попробовать собрать подобную солнечную батарею и самому. При этом не стоит рассчитывать на очень большой выигрыш в цене, кроме того, готовые панели имеют заводское качество как самих элементов, так и их сборки.

Но продажа таких панелей организована далеко не везде, а их транспортировка требует очень жёстких условий и обойдётся достаточно дорого. Кроме того, при самостоятельном изготовлении появляется возможность, начав с малого, постепенно добавлять модули и наращивать выходную мощность.

Материал для панелей

Все современные системы преобразования солнечной энергии теоретически могут выдавать до 25 %. Эти показатели достигнуты при наиболее благоприятных условиях работы. В реальной жизни этот показатель еще меньше. Практика показывает, что для многих изделий считается хорошим коэффициент полезного действия до 15 %.

Поэтому для промышленного получения электричества, используются значительные площади элементов солнечных батарей.

Немаловажным фактором является сам материал, из которого изготавливаются панели.

В массовом производстве для создания панелей используется кремний. Но проблема как раз в том и состоит, что он работает от солнечного излучения, но воспринимает только инфракрасный спектр излучения. Ультрафиолетовая энергия ими не фиксируется и пропадет напрасно.

Мало того. На КПД солнечной батареи оказывает большое влияние и сам кремний. Вернее тот тип, который применяется в фотоэлементах.

Известно, все панели различаются на три вида, по типу строения кремния:

Солнечная погода — существенный фактор, влияющий на производительность. Те же тонкопленочные виды могут стабильно работать и в пасмурную погоду. Но при этом производительность настолько мала, что нужного эффекта трудно достигнуть. Необходим высокий уровень КПД, как у монокристаллов, но с облачностью этот показатель стремительно снижается.

Есть экспериментальная формула, которая наглядно показывает зависимость кпд солнечных батарей от угла, под которым солнечные лучи попадают на поверхность фотоэлементов.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома


>

Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей


>

Самый минимальный запас ёмкости аккумуляторов

, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%

. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%. По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ

это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать

это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД. Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%

, чтобы компенсировать эти потери.

Но и это ещё не все потери

. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись. PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности. А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%.Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20% .

Как сделать систему эффективнее.

Самый первый способ — снизить стоимость обогрева. При любой системе отопления – это утепление дома. Перекрытия крыши, стены, теплоизолированные окна сильно повысят эффективность отопления.

Способы повышения эффективности для гелиосистем:

  • правильная регулировка угла наклона панелей, корректировка, учитывая положение Солнца летом и зимой;
  • правильный расчет места установки, выбор места без затенения от зданий и деревьев;
  • своевременная очистка от мусора, пыли и снега;
  • расчет оборудования. Например, если в течение дня в доме электричеством практически не пользуются, то увеличение емкости аккумуляторов позволит сохранить запасы дневной энергии;
  • увеличение количества панелей, если позволяет мощность системы.

В данном видео можно получить информацию об опыте успешного применения гелиосистемы

Система солнечного отопления и горячего водоснабжения на основе солнечных вакуумных коллекторов

Видео о 3-х летнем опыте солнечного отопление дома можно посмотреть в следующем видео

Солнечное отопление дома солнечными батареями опыт 3 года

Расчет производительности

Применение солнечной энергии и экономическую рациональность таких концепций обусловливает эффективность всех видов систем солнечных батарей. Прежде всего учитываются затраты, обращённые на преобразование энергии солнца в электрическую.

Насколько окупаемы и эффективны такие системы, определяют и такие факторы как:

  • Тип гелиопанелей и сопутствующего оборудования;
  • КПД фотоэлементов и их стоимость;
  • Климатические условия. В разных регионах — разная солнечная активность. Она же влияет и на срок окупаемости.

Как подобрать нужную производительность

Перед покупкой панелей необходимо знать, какую необходимую эффективность сможет выдавать солнечная батарея.

Если ваш домашний уровень потребления составляет, к примеру, 100 кВт/месяц (по электросчетчику), то целесообразно чтобы гелиоэлементы вырабатывали столько же.

С этим определились. Пойдем дальше.

Понятно, что гелиостанция работает только в дневное время суток. Мало того — паспортная мощность будет достигнута при наличии ясного неба. Кроме этого, пика мощности можно добиться при условии падения лучей солнца на поверхность под прямым углом.

При изменении положения солнца изменяется и угол панели. Соответственно, при больших углах будет наблюдаться заметное снижение мощности. Это только при условии ясного дня. В пасмурную погоду можно гарантировать падение мощности в 15–20 раз. Даже небольшое облачко или дымка вызывает падение мощности в 2–3 раза

Это тоже надо принимать во внимание

Теперь — как рассчитать время работы панелей?

Рабочий период, при котором батареи смогут эффективно работать практически на всю мощность, составляет примерно 7 часов. С 9–00 до 4–00 вечера. В летнее время световой день больше, но и выработка электричества в утреннее и вечернее время совсем мала — в пределах 20–30 %. Остальная часть, это 70 %, будет вырабатываться, опять-же, в дневное время, с 9 до 16 часов.

Итак, получается, что если панели имеют паспортную мощность 1 кВт, то в самый летний, самый солнечный день выработают 7 кВт/час электроэнергии. При том условии, что проработают с 9 до 16 часов дня. То есть в месяц это составит 210 кВт/час электроэнергии!

Это комплект панелей. А одна панелька мощностью всего-навсего в 100 ватт? За день она даст 700 ватт/час. В месяц 21 кВт.

Подбор и расчёт системы на солнечных батареях

Система энергоснабжения на основе солнечных батарей кажется крайне простой. Как и ряд других систем электроснабжения, она состоит всего из 4 основных компонентов: фотоэлектрических панелей, аккумуляторов, контроллера заряда и инвертора, который преобразует низковольтный постоянный ток в бытовой, 220 В. Несмотря на такую простоту, установка системы предполагает расчет солнечных батарей для дома с учетом многих факторов.

Схема соединения солнечной батареи с сетью.

Эффективную работу конструкции можно получить только при согласованности элементов между собой. Основной вопрос, требующий рассмотрения, — выбор мощности солнечных батарей, что в реальной жизни выражается в финансовой эффективности внедрения конструкции.

Расчёт ёмкости аккумуляторной батареи для солнечных панелей

Примерно так выглядит солнечная электростанция внутри дома

>

Ещё один пример установленных аккумуляторов и универсального контроллера для солнечных батарей

>

Самый минимальный запас ёмкости аккумуляторов

, который просто необходим должен быть такой чтобы пережить тёмное время суток. Например если у вас с вечера и до утра потребляется 3кВт*ч энергии, то в аккумуляторах должен быть такой запас энергии.

Если аккумулятор 12 вольт 200 Ач, то энергии в нём поместиться 12*200=2400 ватт (2,4кВт). Но аккумуляторы нельзя разряжать на 100%

. Специализированные АКБ можно разряжать максимум до 70%, если больше то они быстро деградируют. Если вы устанавливаете обычные автомобильные АКБ, то их можно разряжать максимум на 50%. По-этому, нужно ставить аккумуляторов в два раза больше чем требуется, иначе их придётся менять каждый год или даже раньше.

Оптимальный запас еъёмкости АКБ

это суточный запас энергии в аккумуляторах. Например если у вас суточное потребление 10кВт*ч, то рабочая ёмкость АКБ должна быть именно такой. Тогда вы без проблем сможете переживать 1-2 пасмурных дня, без перебоев. При этом в обычные дни в течение суток аккумуляторы будут разряжаться всего на 20-30%, и это продлит их недолгую жизнь.

Ещё одна немаловажная делать

это КПД свинцово-кислотных аккумуляторов, который равен примерно 80%. То-есть аккумулятор при полном заряде берёт на 20% больше энергии чем потом сможет отдать. КПД зависит от тока заряда и разряда, и чем больше токи заряда и разряда тем ниже КПД. Например если у вас аккумулятор на 200Ач, и вы через инвертор подключаете электрический чайник на 2кВт, то напряжение на АКБ резко упадёт, так-как ток разряда АКБ будет около 250Ампер, и КПД отдачи энергии упадёт до 40-50%. Также если заряжать АКБ большим током, то КПД будет резко снижаться.

Также инвертор (преобразователь энергии 12/24/48 в 220в) имеет КПД 70-80%.

Учитывая потери полученной от солнечных батарей энергии в аккумуляторах, и на преобразовании постоянного напряжения в переменное 220в, общие потери составят порядка 40%. Это значит что запас ёмкости аккумуляторов нужно увеличивать на 40%, и так-же увеличивать массив солнечных батарей на 40%

, чтобы компенсировать эти потери.

Но и это ещё не все потери

. Существует два типа контроллеров заряда аккумуляторов от солнечных батарей, и без них не обойтись. PWM(ШИМ) контроллеры более простые и дешёвые, они не могут трансформировать энергию, и потому солнечные панели не могут отдать а АКБ всю свою мощность, максимум 80% от паспортной мощности. А вот MPPT контроллеры отслеживают точку максимальной мощности и преобразуют энергию снижая напряжение и увеличивая ток зарядки, в итоге увеличивают отдачу солнечных батарей до 99%.Поэтому если вы ставите более дешёвый PWM контроллер, то увеличивайте массив солнечных батарей ещё на 20% .

Анализ полученных результатов для 400-, 500- и 600-ваттной батареи

Специфика расчета мощности и анализа эффективности солнечных батарей:

  1. В связи с тем что для Москвы нет данных для угла наклона в 70°, но есть имеются данные для 40° и 90°, будет использоваться среднее значение.
  2. Значения месячной выработки округляем до 1 кВт/ч в меньшую сторону.
  3. В процессе расчета учитывается суммарный КПД контроллера и инвертора, равный 91%.
  4. «Режим дефицита» предполагает, что суммарной месячной выработки не будет хватать для внутренних потребностей самой системы (работы контроллера и инвертора).

Схема работы солнечных батарей.

Однако в период с мая по начало августа выработка превышает аварийный минимум на 80%, с учетом тепла и длинных дней в данный период указанную номинальную мощность можно считать допустимым аварийным вариантом, если работа инвертора будет осуществляться не постоянно, а только в ситуации, когда электричество действительно нужно.

Приобретение солнечных батарей с меньшей мощностью можно рассматривать лишь для специальных целей, приемлемое круглосуточное бытовое электроснабжение они будут не способны обеспечить даже летом. Для маломощной системы критически важным является собственное потребление контроллера и инвертора и заряда. Оно кажется незначительным, однако при непрерывной работе за сутки набегает 0,6 кВт/ч, что в пересчете за месяц составляет 17-19 кВт/ч – треть от выработки, которая необходима для реализации аварийного режима.

В «темные» месяцы суммарная выработка системы с малой мощностью меньше этой величины. Конструкцией современных контроллеров и инверторов заряда предусмотрена защита от переразряда аккумуляторов, поэтому при фатальном повреждении системы непрерывная подача напряжения в автономной маломощной системе не гарантируется зимой даже в случае отсутствия нагрузки. В таблице данное время выделено серым цветом. Такая солнечная батарея в пасмурные зимние дни не сможет круглосуточно поддерживать напряжение, хотя в солнечную погоду даже в эти месяцы она способна обеспечить питание электроприборов необходимой мощности.

https://youtube.com/watch?v=kzX1ua07jZI

500-ваттной батарее в подмосковных условиях уже под силу дать аварийный минимум в период с мая до конца августа и производить 80% минимума в апреле и марте. 600-ваттные системы расширяют период аварийного использования со второй половины марта до сентября.

Увеличение эффективности солнечных батарей

Стоимость системы солнечного энергоснабжения зависит от варианта его использования. Если энергию солнца использовать как дополнительный источник электроэнергии, тогда она вам обойдется дешевле.  Общие затраты также будут значительно меньше, если сами будете устанавливать гелиосистему со всем оборудованием.

Правильный выбор производителя, тоже влияет на окупаемость солнечной электростанции. Не нужно ориентироваться на европейский бренд, китайский вариант солнечных панелей и оборудования ничуть не хуже, зато намного дешевле. Самый дорогой элемент солнечной электростанции — это солнечные панели. Можно приобрести отдельные солнечные модули и зимними вечерами их собирать в панели.

Правда их производительность будет ниже заводских, и для достижения необходимой мощности солнечных панелей нужно сделать их больше. За то какая экономия!  Выбрав правильный угол установки солнечных элементов для вашей местности, можно поднять эффективность солнечных батарей.Лучше будет установка панелей на специальную автоматическую подвижную раму, которая поворачивается вслед за солнцем.

Угол наклона солнечных батарей для максимальной эффективности зимой и летом

Батареи будут получать максимальное освещение солнечной энергией в течение всего светлого времени суток. Если в вашей местности преобладает пасмурная погода, то лучше остановиться на микроморфных пленочных панелях, которые вырабатывают энергию и в пасмурные дни. Самой дорогой и самой эффективной является монокристаллическая фотопанель, с КПД 20-25%. Популярные поликристаллические изделия имеют КПД равные 15-20%, и по эффективности мало уступают монокристаллическим.

Поделитесь в социальных сетях:FacebookX
Напишите комментарий