Муть и грязь, песок
Пожалуй, это одна из самых простых проблем. Бороться с ней помогают фильтры различной природы. В случае, когда применяется скважина не песок, то часто прибегают к предварительной прокачке скважины перед водозабором. Эту операцию можно автоматизировать, запуская прокачку по таймеру с заданной регулярностью, подбираемой опытным путем. Можно применять и промывные фильтры с регулярной промывкой по таймеру, либо с разделением потока на чистую воду и дренаж, с соответствующим обратным клапаном.
Некоторые хитрости при оборудовании водоподготовки
Не секрет, что оборудование для водоподготовки занимает изрядно места. Да и устанавливаться оно должно в теплом помещении, где температура всегда положительная. Замораживание агрегатов может привести к негативным последствиям, даже если вода из системы слита. Загрузка и прочие фильтрующие элементы, могут содержать остаточную воду, которая замерзая будет их просто разрывать, возможно, что не с первого раза, не в первую зиму, но сделает она это неминуемо. Отсюда следует, что проектировать помещение для размещения оборудования стоит заранее, еще на стадии создания проекта дома. Иначе придется столкнуться с проблемой поиска наилучшего решения по размещению.
Гидроаккумулятор из нержавейки. Фотография неизвестного автора.
Как известно, чем больше по объему гидроаккумулятор, тем реже будет включаться насос и тем дольше он прослужит. Но далеко не всегда удается найти место в уже готовом доме для размещения крупного гидроаккумулятора. На помощь тут может прийти смекалка. Ведь вместо одного 100 литрового гидроаккумулятора можно смело поставить два по пятьдесят литров. Или четыре по 25. Если места нет в доме, но есть подпол, где круглый год температура выше нуля, то гидроаккумулятор можно разместить и в подполе, а чтобы он не гнил от повышенной влажности воздуха, то его можно взять в исполнении из нержавеющей стали или же обработать такими доступными средствами как Мовиль или Пушечное сало. Средства недороги, приобретаются в любом автомагазине и предназначены как раз именно для защиты от коррозии.
Кабинетный фильтр в месте установки. Фотография неизвестного мастера.
Если же требуется система очистки воды, но места катастрофически мало (а многие системы критичны в том числе и к ориентации в пространстве и могут быть установлены только вертикально), то можно присмотреться к так называемым кабинетным системам водоочистки. Такие системы примерно в половину компактнее своих полноразмерных собратьев, но и по производительности им уступают на столько же. Зато, благодаря их скромным размерам, они могут быть установлены, например, в чулане или другом ограниченном по объему месте.
Иногда требуется осуществлять дистанционную коммутацию водопровода, например, открывать или закрывать шаровые краны удаленно или выполнять похожие операции. Помочь тут может специальный механизм дистанционного управления. Встречаются варианты с управлением напряжением в 12 вольт, такие системы интегрируются в сложные системы по управлению водой или контролем за протечками. Но есть и использующие обычное напряжение в 220 вольт бытовой сети. И хотя цены на подобные управляемые краны — кусаются, они могут найти свое достойное место и в вашей системе водоснабжения и водоподготовки.
Система для удаленного управления шаровыми кранами.
При необходимости прокладки кабеля или трубы через стену из бетона или кирпича, можно просверлить ее и обычным перфоратом или мощной дрелью. Для этого необходимо использовать коронки по бетону/камню. Коронки с твердосплавными зубьями спокойно пробурят бетон в ударном режиме, но им не по зубам металлическая арматура. А вот алмазные коронки, хотя и стоят дороже, но пройдут металл и без всякого бурения, применяя только обычное вращение. Для бытового применения стоит выбирать коронки для сухого бурения. Если глубина коронки не позволяет пробурить отверстие на всю длину сразу, то можно откалывать небольшие кусочки стены в канале обычным буром, удалять их и продолжать бурить глубже. Если же глубины совсем не хватает, то можно наметив центральное отверстие длинным буром, продолжить бурение с другой стороны.
Коронка по бетону для бурения и алмазная для сверления.
Природная вода хоть и сделана «в природе», но зачастую требует очистки, хотя бы минимальной. А очистка может быть делом очень затратным. И дабы не выкидывать средства на воздух, стоит очень ответственно подойти к этому вопросу. Ведь от того, насколько качественно выполнен анализ воды, подобрана и смонтирована система, ваш бюджет будет петь романсы или же у вас появится отличный повод похвастаться перед друзьями тем, как вам удалось качественно подобрать системы и не заплатить лишнего.
Озонирование
Применение такого активного вещества, как озон для очистки воды не является чем-то уж экзотическим. Системы по озонированию уже давненько применяются для очистки воды в бассейнах и на водопроводных станциях. Озон — не только страшный яд для биологических объектов, но и сильнейший окислитель. Собственно, именно по причине сильнейших способностей к химическому окислению он и есть яд для живого. По этой причине озон применяется, с одной стороны, для обеззараживания питьевой воды, а с другой, для очистки от растворенных в воде металлов. Ведь не секрет, что, например, растворенное в воде железо не так-то уж и просто отделить от самой воды. А при помощи озонирования растворенный металл переходит в твердую форму и может быть механически отделен от очищаемой воды.
Однако, несмотря на все преимущества озонирования, для очистки воды в частном домовладении метод практически не применяется. Оборудование по озонированию требует квалифицированного обслуживания, ведь любая неполадка в системе может грозить серьезными последствиями для здоровья жильцов. Более того, высокие энергетические затраты на озонирование, делают его использование экономически затратным, а в некоторых случаях и невозможным из-за отсутствия достаточных мощностей.
Ионообменные смолы
Ионообменный способ фильтрации — похож на метод сорбции, собственно он и есть одна из его разновидностей. В качестве фильтрующего вещества в процессе выступают различные иониты. Это могут быть как гранулы, так и готовые объемные конструкции или даже мембраны. Суть метода в обмене ионов растворов фильтруемой среды и собственно самого фильтра. При этом свойство среды может меняться значительно, так кислота может стать солевым раствором и наоборот.
Ионообменный метод применяется для обессоливания воды или для изменения свойств растворов. Однако, в последнее время подобные фильтры стали применяться и для удаления растворенных металлов из воды. Причем, способ ионообменный показывает не такие уж и плохие результаты. Разумеется, под каждую воду, необходимо подбирать свой собственный набор ионитов. Ионообменные смолы могут работать в фильтрах продолжительное время, а при соблюдении технологии многие годы и десятилетия. Подобное возможно благодаря способности ионитов к восстановлению своего первоначального состояния. Происходит это посредством промывки емкости с ионитами раствором поваренной соли. Соль в таких фильтрах, обычно хранится в прямоугольных емкостях, соединенных шлангами с емкостью с ионитами. По сигналу автоматического контроллера, раствор соли подается и промывает иониты, происходит обратный ионный обмен, а остатки раствора сливаются в дренаж.
Кстати, на столбах в коттеджных поселках висят объявления о поставках соли именно для систем очистки. Правда соль для восстановления ионитов применяется не в виде порошка, а в прессованных таблетках, что позволяет сократить период между загрузками новых партий соли в систему. Применение таблетированной соли обусловлено тем, что она медленнее растворяется и как следствие можно использовать меньшие по объему баки для хранения промывочного раствора.
Фильтры для питьевой воды
По своему виду и принципу очищения фильтры бывают нескольких видов.
Угольный фильтр представляет собой систему, которая содержит в себе компонент активированного угля, благодаря чему он впитывает в себя растворенные газы, хлор, и органические элементы. Угольные запасные картриджи легко можно заменить на новые, что очень удобно и не доставляет особого дискомфорта.
Фильтры смягчители действуют по принципу снижения жесткости воды, удаляют излишек солей жесткости. Благодаря этим фильтрам с воды удаляется большое количество железа и других солей тяжелых металлов.
Также эти фильтры очистки питьевой воды могут быть обработаны особым солевым раствором, и быть использованными повторно.
Фильтр обезжелезиватель используется для того, чтобы удалить в воде лишнее железо и марганец. Принцип фильтра заключается в том, что, при определенной химической реакции железо и марганец превращаются в нерастворимые соединения и оседают на фильтре. Их можно легко удалить, стоит всего лишь помыть фильтр проточной водой.
Фильтры обратного осмоса действуют таким способом, при подаче воды все вредные соединения, которые поступают в фильтр, разделяются на молекулы и оседают на разных мембранах осмоса, таким образом, даже самые большие молекулы, бактерии и вирусы этот фильтр не пропускает.
Еще существуют и такой вид фильтра, как ультрафиолетовые стерилизаторы.
Их работа заключается в том, параметры излучения УФ почти полностью обеспечивают стерилизацию воды. Ультрафиолетовые лампы, встроенные под корпусом, гарантируют обеззараживание воды. Эти фильтры больше подходят для частного сектора, нежели для квартир, так как в квартирах воду уже хорошо хлорируют.
Как очистить воду из скважины от песка
Удаление песка или частичек глины, ила, других крупных частиц происходит на фильтре, опущенном в скважину. Делают это при помощи простых механических фильтров — пластинчатых или песчаных и называют эту стадию — ступенью грубой очистки.
Если взвеси много, одним фильтром не обойтись: он будет быстро забиваться. Практичнее поставить систему с ячейками разных размеров. Например, вода из скважины попадает на фильтр, улавливающий частицы размером до 100 мкм, затем установлен фильтр со степенью очистки до 20 мкм. Они уберут практически все механические примеси.
Типы фильтров
Фильтры грубой очистки бывают: сетчатые, кассетные (патронные) или засыпные. Сетчатые чаще всего ставятся в самой скважине. Они представляют собой полую трубу чуть меньшего диаметра, чем ствол скважины. В стенах трубы просверлены отверстия или проделаны щели (форма отверстий зависит от грунта), сверху намотана проволока, а по ней — сетка. Ячейка сетки выбирается в зависимости от типа грунта водоносного слоя: она должна задерживать основную массу загрязнений и в то же время не забиваться. На этой стадии задерживаются самые крупные примеси, которые к тому же могут повредить насос. Но часть твердых частиц все равно поднимается на поверхность. Они удаляются в процессе дальнейшей очистке.
Сетчатые фильтры устанавливают в скважины. Они отфильтровывают песок и другие грубые примеси
Иногда поставить фильтр в скважине нет возможности. Тогда всю очистку переносят на поверхность. Для очистки воды из скважины в этом случае используют кассетные или засыпные фильтры. В кассетных стоит сменный картридж — система мембран, измельченный древесный уголь, и т.п. на которых оседает песок и другие крупные загрязнения.
Время от времени картриджи засоряются и их нужно менять. Периодичность зависит от степени загрязнения воды и интенсивности ее использования. Иногда один картридж быстро забивается. В этом случае имеет смысл ставить два фильтра с разными степенями очистки. Например, первый задерживает частицы до 100 мкм, а стоящий за ним уже до 20 мкм. Так и вода будет чистой и картриджи придется менять реже.
Один из видов картриджей для фильтрования воды в частном доме
В засыпных фильтрах в емкость насыпают сыпучий фильтрующий материал — песок, измельченная ракушка, специальные фильтраты (например, BIRM (БИРМ)). Простейший механический фильтр — бочка с песком, имеющая функцию промывки. Один нюанс: при наличии большого количества растворенного железа предпочтительнее все-таки засыпать специальный фильтрат, он одновременно является еще и катализатором, который окисляет растворенное железо и марганец, заставляя их выпадать в осадок.
В зависимости от размеров частиц засыпки такого фильтра, задерживаться могут довольно мелкие частицы. Иногда ставят два таких фильтра подряд, только с разной засыпкой — сперва вода попадает в тот, где фильтрат имеет большие размеры, потом с более мелким наполнением. Насыпные фильтры для очистки воды из скважины хороши тем, что требуют замены засыпки примерно раз в три года. И этим они отличаются от пластинчатых, фильтр которых надо менять гораздо чаще: иногда и раз в месяц, иногда — раз в три-шесть.
Но чтобы очистка при помощи засыпного фильтра была эффективной, они нуждаются в периодической промывке фильтрата. Обычно это происходит путем перекрывания одних кранов и открывания других. В этом случае вода идет в другом направлении, вымывая основное количество накопленных осадков.
Принцип очистки воды в засыпном фильтре
Пример сборки двух последовательных фильтров для очистки воды от грубых примесей смотрите в видео.
https://youtube.com/watch?v=fmVtxZb7DdQ
Бытовая водоподготовка
Контроль над соответствием требованиям безопасности параметров подаваемой населению воды давно не является приоритетом для муниципальных служб. Проблему отчасти решает установка дополнительных систем очистки силами граждан. Наиболее доступное решение в этой сфере – бытовые фильтры для воды. Стоимость фильтрующего оборудования обычно невысока, а сложность их монтажа и регулярного обслуживания минимальна.
При отсутствии централизованного водоснабжения возникает однозначная необходимость в более совершенных системах очистки. В загородном доме или на даче источником воды обычно служит закрытый колодец. Даже если качество жидкости устраивает владельцев большую часть года, при сезонных повышениях уровня грунтовых вод оно может резко ухудшаться.
Оптимальным вариантом в этом случае станет установка комплексной системы фильтров, обеспечивающей достаточный уровень очистки от механических загрязнений с последующим обеззараживанием.
Особенно значимую роль играет водоподготовка для котельной частного дома или коттеджа. Возможности по очистке в этом случае ограничены соображениями безопасности: в частности, для умягчения воды и связывания солей жесткости не используются многие эффективные технологии из-за возможного пагубного влияния на здоровье людей. Стоит помнить, что установка любого дополнительного оборудования для бытового газового котла требует обязательного согласования проекта в соответствующих службах.
Метод сорбции
Сорбция — это в общем-то целых три различных по направлению способа. Первый — адсорбция. При адсорбции ненужные вещества поглощаются поверхностью твердого вещества. Поэтому материалы адсорбенты обычно пористые, обладают большо́й площадью поверхности. Наиболее популярным адсорбентом, т.е. веществом, поглощающим ненужные вещества поверхностью, можно смело назвать активированный уголь.
Второй способ это — абсорбция процесс поглощения примесей объемом вещества (не поверхностью, а объемом). Как правило, абсорбция применяется в технологических процессах на производствах, хотя не исключено, что могут появиться и фильтры для воды на основе этого процесса.
Если отойти от научной трактовки и опуститься на бытовой уровень, то адсорбция применяется весьма активно в плане фильтрации воды. Обычно бытовые фильтры для небольших объемов воды как раз и заполнены чем-то типа активированного угля. Метод вполне рабочий, однако фильтры периодически будет необходимо менять, да и эффективность фильтрации падает по мере того, как поверхность адсорбента будет загрязняться.
Ну и третий это ионный обмен, но на нем я остановлюсь отдельно.
Оборудование для водоочистки воды из скважин от железа
Состояние грунтовых и даже артезианских вод в наше время оставляет желать лучшего, поэтому неудивительно, что создание различных способов фильтрации остается одним из самых перспективных направлений развития новых технологий.
Вследствие того, что жидкость из скважины может быть насыщена как механическими примесями и органикой, так и солями, кислотами и другими веществами, для каждого отдельного случая применяются различные способы их удаления.
Водоочистка от железа – одна из самых старых проблем, для решения которой изобрели несколько способов различной продолжительности и ценовой политики.
Обычная безреагентная установка состоит из:
- оболочки из прессованного TPR-пластика с полиэтиленовым ламинированием внутренней поверхности;
- клапана управления ручного или автоматического типа;
- дренажно-распределительной системы;
- наполнителя, обеспечивающего процесс фильтрации.
Водоочистка воды из скважин в таких устройствах обеспечивается именно засыпкой для фильтрации. Ее изготавливают как из силикатного песка, керамики или алюмосиликата, так и из их смеси для повышения качества обработки.
Основная задача таких фильтров окислить железо и марганец для того, чтобы эти соединения выпали в осадок и задержались в таком виде на засыпке. Менять этот состав нет необходимости – достаточно регулярно проводить регенерацию обратной промывкой.
Водоочистка воды из скважин от железа, в общем случае, – нетипичная задача. Невозможно сказать, что какая-нибудь установка решит сразу все проблемы.
Оборудование нужно подбирать в зависимости от конкретных потребностей каждого объекта:
- Фильтрация железа, концентрация которого незначительна и вызывает минимальный дискомфорт. В таких случаях вполне можно обойтись самыми бюджетными моделями простой конструкции. Наполнителя потребуется максимум пара упаковок в случае использования крупных баллонов. Можно оставить ручное управление клапанами и при качественном распределении нагрузок даже удалить сероводород.
- Водоочистка сырья со значительным процентом железа в составе. Стандартные установки не рассчитаны на значительные объёмы металла и в таком случае как раз применимы дополнительные функции насыщения кислородом. Окисление может проводиться как в открытой емкости, так и в закрытом сегменте фильтра. Кроме железа, таким способом ликвидируется также марганец с сероводородом.
- Обработка воды с железом, с повышенной жесткостью и ощутимым неестественным запахом. Если такая ситуация сложилась на частном участке, то лучший выбор – это компактные многоуровневые фильтры, рассчитанные на полный спектр очистки. На производствах целесообразно создать сеть из нескольких установок с разными задачами, которые результативно уничтожат соли и органику. Главное, провести перед основной очисткой механическую.
- Фильтры водоочистки для источников с очень сильным запахом сероводорода и стабильно высоким показателем наличия железа. Решение такой проблемы либо очень простое: незакрытая емкость на несколько сотен литров, в которой одновременно будут происходить процессы окисления, и выветриваться сернистые пары. Либо достаточно дорогостоящее с подключением самых мощных моделей фильтров.
Другие методы водоочистки воды из скважин от железа
Водоподготовка и водоочистка от железа может проводиться тремя способами:
- При незначительной концентрации железа до 3,0 мг/л можно использовать стандартные загрузочные фильтры, с добавлением растворенного кислорода, которые запускают ионный обмен, смягчающий воду. Для регенерации достаточно обычной каменной соли, засыпаемой при обратной промывке раз в год.
- При стандартной концентрации железа используют окисление в резервуарах, хотя этот способ и подходит для свободного насыщения кислородом, также он является причиной появления микроорганизмов и органики в емкости, а значит необходимости дополнительной очистки. Также возможно проведение напорной и аэрации с применением компрессора или озонирование воды. Насыщение О3 также связывает молекулы железа и провоцирует его выпадение в осадок. Такие системы невероятно эффективны, но стоят достаточно дорого и требуют квалифицированного обслуживания.
- При заметной концентрации до 10мг/л требуется профессиональный подход с использованием комплексных загрузок или многоступенчатых установок, однако эффективность несоизмерима с затратами и высоким износом оборудования.
Не все виды фильтров с применением аэрации не требуют других химических реагентов. Зачастую для выведения осадка используется раствор марганца и калия, остатки которого выводятся через дренажную систему.
Стоит также помнить, что заметно влияет на цвет воды и проявляется в механических ржавых взвесях только трехвалентное железо, а раствор FeCO3 незаметен до начала процедуры окисления.
Тем не менее, оба вида негативно влияют как на человека при попадании внутрь организма, так и на трубопроводные системы, вызывая коррозию.
Нормативы качества воды
Установленные в нашей стране требования к физико-химическим параметрам технической и питьевой воды нельзя назвать слишком жесткими, однако для обеспечения нормальной работы оборудования и безопасности населения они вполне достаточны.
Для проведения анализов используется свежая вода, забор которой осуществляется из скважины или колодца непосредственно перед процедурой. Допускается хранение в закрытой бутылке в течение 2-3 часов при температуре не выше 10С.
Пригодная для питья жидкость имеет мутность не выше 2.6 ЕМФ, жесткость – порядка 7мг-экв/л и слабо ощутимые привкус и запах. Коэффициент pH может изменяться в разных регионах, но должен оставаться в пределах 6-9 единиц. Содержание ионов металлов в такой воде не превышает 1мг/л, кроме кальция, магния, натрия и железа.
В миллилитре воды не должно содержаться болезнетворных микроорганизмов, а общее микробное число не может превышать 50 единиц на мл.
Показатели | СанПиН 2.1.4.1074-01 | |
Единицы измерения | Нормативы (предельно допустимые концентрации) (ПДК.), не более | |
1 | 2 | 3 |
Обобщенные показатели | ||
Водородный показатель | единицы рН | в пределах 6-9 |
Общая минерализация (сухой остаток) | мг/л | 1000 (1500)2 |
Жесткость общая | мг-экв./л | 7,0 (10)2 |
Окисляемость перманганатная | мг/л | 5,0 |
Нефтепродукты, суммарно | мг/л | 0,1 |
Поверхностно-активные вещества (ПАВ), анионоактивные | мг/л | 0,5 |
Фенольный индекс | мг/л | 0,25 |
Щелочность | мгНСО3-/л | – |
Фенольный индекс | мг/л | 0,25 |
Неорганические вещества | ||
Алюминий (А13+) | мг/л | 0,5 |
Азот аммонийный | мг/л | 2,0 |
Асбест | Милл.волокн/л | – |
Барий (Ва2+) | мг/л | 0,1 |
Бериллий (Ве2+) | мг/л | 0,0002 |
Бор (В, суммарно) | мг/л | 0,5 |
Ванадий (V) | мг/л | 0,1 |
Висмут (Bi) | мг/л | 0,1 |
Железо (Fe, суммарно) | мг/л | 0,3 (1,0)2 |
Кадмий (Сd, суммарно) | мг/л | 0,001 |
Калий (К+) | мг/л | – |
Кальций (Ca+2) | мг/л | – |
Кобальт (Co) | мг/л | 0,1 |
Кремний (Si) | мг/л | 10,0 |
Магний (Mg+2) | мг/л | – |
Марганец (Мn, суммарно) | мг/л | 0,1 (0,5) 2 |
Медь (Сu, суммарно) | мг/л | 1,0 |
Молибден (Мо, суммарно) | мг/л | 0,25 |
Мышьяк (Аs, суммарно) | мг/л | 0,05 |
Никель (Ni, суммарно) | мг/л | 0,1 |
Нитраты (по N03) | мг/л | 45 |
Нитриты (по NO2) | мг/л | 3,0 |
Ртуть (Нg, суммарно) | мг/л | 0,0005 |
Свинец (РЬ, суммарно) | мг/л | 0,03 |
Селен (Sе, суммарно) | мг/л | 0,01 |
Серебро (Ag+) | мг/л | 0,05 |
Сероводород (H2S) | мг/л | 0,03 |
Стронций (Sг2+) | мг/л | 7,0 |
Сульфаты ( S04 2-) | мг/л | 500 |
Фториды (F”) Для климатических районов | ||
-I и II | мг/л | 1,5 |
– III | мг/л | 1,2 |
Хлориды (Сl-) | мг/л | 350 |
Хром (Сг3+) | мг/л | 0,5 |
Хром (Сг6+) | мг/л | 0,05 |
Цианиды (СN-) | мг/л | 0,035 |
Цинк (Zn2+) | мг/л | 5,0 |
Слишком много марганца
В тех случаях, когда в воде встречается повышение уровня железа, часто встречается еще и повышение уровня содержания марганца. Превышение содержания марганца приводит к ухудшению вкуса воды, темным пятнам на сантехнике и черном налете на водопроводных трубах.
Избавиться от марганца сложнее, чем от железа, однако на практике применяются проверенные методы, позволяющие достигать достойного результата при средних затратах. Для деманганации применяют вакуумную аэрацию, либо ионный обмен. Как и железо, марганец переводится из двухвалентной в трехвалентную форму, либо окислением кислородом, либо на катализационных загрузках, последние периодически необходимо восстанавливать, прибегая к промывке их сложными составами. А вот ионообменный способ позволяет избегать излишней суеты и удаляет марганец попутно с железом, а заодно и умягчает воду.
Обратный осмос
Осмосом называют процесс, когда жидкость, являющаяся растворителем, старается проникнуть через мембрану в сторону наивысшей концентрации того, что жидкость может растворить. Так, например, если разделить сосуд мембраной с очень мелкими порами, через которые могут проходить только молекулы воды, с одной стороны налить воду, а с другой раствор соли и уравновесить давление на стенки мембраны, то вода, постепенно будет просачиваться сквозь мембрану к солевому раствору, постепенно понижая его насыщенность.
Обратный же осмос, построен на противоположном движении растворителя (воды). В установках обратного осмоса применяется все тоже разделение жидкостей и мембрану с тончайшими отверстиями проницаемыми только для молекул воды. Но, благодаря создаваемому давлению, со стороны неочищенной воды, она продавливается сквозь мембрану. Причем продавливается практически дистиллированная вода, состоящая практически исключительно из молекул H2O. Остатки воды, с повышенной концентрацией отфильтрованных веществ смывается в дренаж.
Бытовой фильтр с системой обратного осмоса.
Эффективность установки по очистке методом обратного осмоса зависит от давления, развиваемого со стороны очищаемой воды, состояния мембраны и изначального «загрязнения» воды. Возможно применение многоступенчатых обратноосмотических установок, где фильтрация на мембране происходит несколько раз.
Установки обратного осмоса применяются в основном на производствах, либо для опреснения морской или солоноватой воды. В последнее время, подобные системы появились и в быту. Компактные приборы устанавливаются под мойку и позволяют получать относительно чистую воду. Следует учитывать, что система обратного осмоса, несмотря на свою эффективность, очищает воду только от молекул вещества, которые крупнее молекул воды. А вот от растворенных газов она не спасает, впрочем, как и от веществ с меньшими размерами молекул, нежели водяные.
Но нарекания системы обратного осмоса вызывают совсем по другой причине. Многие слышали, что употребление дистиллированной воды, воды бедной минералами вредно для здоровья. Дело тут в том, что, потребляя такую воду человек не только уменьшает приток полезных минералов в свой организм, но и вымывает их из него (вспоминаем осмос). Но сторонники применения систем обратного осмоса настаивают на том, что человек получает необходимое ему количество минералов с пищей, поедая продукты питания. В общем, точка в этом споре так до конца еще и не поставлена, но производители фильтров уже стараются удовлетворить все запросы потребителей и выпускают системы обратного осмоса с дополнительной минерализацией. Но и тут все не так просто. Да, картриджи с минерализацией помогут насытить отфильтрованную воду полезными элементами, но в существующих на рынке системах нет возможности регулировать уровень минерализации. И получается, что, когда минерализатор новый, уровень минерализации воды будет высоким, а ближе к концу срока службы минерализация будет снижаться.
Новые технические решения технологических задач
Мембранный аппарат с нестационарной гидродинамикой (пат. РФ № 2174432, В01 D63/06) (рис. 14 а, б, в) позволяет добиться снижения на мембране слоя высокой концентрации и содержит мембранные модули 1, выполненные в виде двух коаксиально расположенных цилиндров 2 и 3. Причем, цилиндр 2 выполнен из непроницаемого для раствора материала, а цилиндр 3 – из пористого материала, на внутреннюю поверхность которого нанесена полупроницаемая мембрана 5. Цилиндры 2 и 3 снабжены штуцерами ввода исходного раствора 4, штуцерами вывода фильтрата 6 и концентрата 7. Внутри цилиндра 3 расположен непроницаемый рукав 8, выполненный, например, в виде гофрированной трубки, имеющей повышенный характер упругих деформаций. Для возникновения упругих деформаций непроницаемого рукава 8 предназначена вильчатая цепь 9 с шаровыми фторопластовыми элементами 10. Шарнир цепи 9 является, в свою очередь, осью 11, которая закрепляет шаровые элементы 10 между собой. Для предотвращения осевых перемещений шаровых элементов 10 предназначены фторопластовые втулки 12 и стопорные кольца 13. Непроницаемый рукав 8 при помощи фланцевого соединения 14 закрепляется внутри цилиндра 3. Для приведения вильчатой цепи в движение предназначены ведущая 15 и ведомая 16 звездочки, имеющие в торцовой стороне вырезы для захвата звеньев цепи 9 и шаровых элементов 10.
Мембранный аппарат (рис. 14 б) работает следующим образом.
Исходный раствор подается через штуцеры 4 в мембранные модули 1 под определенным давлением противоточно движению цепи 9. Прошедший через полупроницаемые мембраны фильтрат, отводится по каналам с помощью штуцеров 6, а образующийся в процессе разделения концентрат из напорного канала – через штуцеры 7. Исходный раствор, попадая в напорный канал мембранных модулей 1, претерпевает ряд гидродинамических изменений, в частности, гидродинамических параметров разделяемой среды, например, рабочего давления Рраби линейной скорости потока Vлинпо всей длине мембранной поверхности модулей 1. При движении шаровых элементов 10 внутри рукава 8, происходит деформация последнего, при которой обеспечивается необходимый зазор между поверхностями рукава 8 и мембраны 7.
Рис. 14. Мембранный аппарат с нестационарной гидродинамикой
Течение разделяемого раствора вдоль мембранной поверхности зоны I (рис. 14 в) неизбежно сопровождается увеличением его кинетической энергии и падением давления. Возникающая в этом случае турбулентность усиливается движением навстречу потоку цепи 9 с набором шаровых элементов 10, благодаря чему повышается сжатие разделяемой среды и срыв слоя высокомолекулярных соединений 17 с цилиндрических стенок мембранной поверхности 5. Молекулы разделяемого раствора, по мере продвижения по зоне II, преодолевают нарастающее давление за счет кинетической энергии потока, уменьшающейся вдоль этой зоны до некоторого момента, а также в направлении от оси модуля к мембранной поверхности.
Периферийный поток, непосредственно прилегающий к мембране 5, обладает низким скоростным показателем, поэтому, он не может преодолеть нарастающее давление и в некоторый момент времени возникают противоточные основному потоку перетоки, что также приводит к турбулизации разделяемой среды. Эффект турбулизации исходного раствора усиливается тем, что противоточное основному потоку движение цепи 9 с набором шаровых элементов 10 приводит к интенсивному пульсационному гидродинамическому режиму, который носит нестационарный временной характер.
Мембранный аппарат с нестационарной гидродинамикой отличается тем, что элементы выполнены шаровыми, приводимыми в движение посредством ведущей и ведомой звездочек, имеют возможность перемещения в непроницаемом рукаве вдоль мембранной поверхности.
Просмотров:
495