Как установить воздушный нагнетатель своими руками
Существует несколько подходов, позволяющих установить механический нагнетатель воздуха на автомобили семейства ВАЗ своими руками. Это изготовление самим такого устройства, обеспечивающего режим турбо или форсирование двигателя, или использование готового КИТ-набора.
Самодельный нагнетатель на ВАЗ
При таком подходе определяющим будет механический нагнетатель воздуха. Именно от него зависит вся будущая конструкция. Главное – найти соответствующий требованиям воздушный нагнетатель от импортного автомобиля, или придется использовать самодельный. Возможно и такое, причем в этом случае применяются подходящие детали и узлы от совершенно неожиданных устройств, например, пылесоса.
Изготавливая подобный самодельный воздушный нагнетатель, необходимо учитывать буквально все – габариты, вес, размещение в подкапотном пространстве, как и где будет располагаться приводной шкив и ремень, производительность этого устройства, режимы работы (кратковременный или продолжительный), возможность смазки и многое, многое другое. После того, как появится ясность с компрессором, необходимо рассчитать реализацию турбо режима для двигателя.
Здесь надо учесть, каким образом будет изменена топливная и охлаждающая система автомобиля, какие изменения необходимо внести в его управление и как это осуществить, какое давление окажется допустимым для безопасной работы мотора, при реализации с помощью подобного устройства режима турбо.
Даже приведенный далеко не полный перечень вопросов показывает, что изготовить самодельный воздушный нагнетатель на ВАЗ любого семейства, хоть 2107,2106, хоть 2114, 2112, достаточно сложно, но возможно. Примером может послужить фото, показывающее, что такая работа успешно выполнена. Правда, это не ВАЗ, но важен сам факт – изготовить самодельный воздушный компрессор, в котором его приводной узел подсоединен к коленвалу двигателя, – возможно.
Приводной нагнетатель своими руками – из КИТ-набора
Да, есть в продаже такие комплекты, позволяющие своими руками реализовать режим турбо в автомобилях ВАЗ 2107, 2106, 2114, 2112. Как правило, он включает в себя все нужное для сборки и установки подобного устройства на автомобиль – сам компрессор, ремни, приводной узел, кронштейны и воздуховоды. Что собой представляет подобный комплект, позволяет понять приведенное фото.
Главное достоинство подобного подхода по реализации режима турбо на своей машине – простота и полная адаптация технических решений под конкретный вариант – 2107, 2106, 2114, 2112. Как правило, изготовителями КИТ-наборов являются китайские производители, что обеспечивает их достаточно приемлемую цену.
В качестве достоинств реализации режима турбо таким образом, стоит отметить его заточенность именно на автомобили ВАЗ той или иной модели (2107, 2106, 2114, 2112). К преимуществам подобного подхода следует также отнести то, что при некоторых условиях, когда уровень создаваемого дополнительного давления не больше половины бара, не требуется вмешательства в топливную систему автомобиля .
Расписывать порядок реализации режима турбо из подобного набора нецелесообразно, в каждом из них есть своя инструкция по сборке. К недостаткам можно отнести страну-изготовителя, но здесь уж как повезет. Как выглядит автомобиль после доработки и как ее выполнить, дополнительно поможет понять
Один из доступных автолюбителям способов форсировать мотор старого автомобиля и придать ему новую жизнь – поставить нагнетатель воздуха. Эту работу можно выполнить и своими руками, если использовать имеющиеся в продаже КИТ-наборы на автомобили ВАЗ.
Оцените полезность статьи!
Турбонаддув на ВАЗ своими руками
Сегодня турбонаддув на ВАЗ – это экзотика. Но преимущества в плане мощности турбо моторов над «атмосферными» способствуют появлению машин, которые оснащены турбинами. Фактически турбонаддув на ваз своими руками — это получение максимального количества лошадей. При одном и том-же объеме турбированный двигатель может иметь мощность в 2 раза большую при том-же расходе топлива. Сегодня в моду вошли турбодвигатели с небольшим литражом.Специфика подобных моторов такова, что если большинство усовершенствований ничего не дают на атмосферниках, то на турбинных моторах полученные результаты потрясают. У многих есть мнение, что с прямотоком двигателю легче «дышать» и крутится. Но это недоказанные мнения. Если атмосферный двигатель придает больше звука, чем прямоток, то на турбо элементарным впуском и выпуском легко добиться высоких результатов.Рассмотрим турбонаддув на ваз своими руками в плане модернизации, вариант установки турбины с низким давлением и двигателем с распределенным впрыском. Коленвал, шатуны и блок щилиндров можно применять стандартные. Клапаны и распредвал — тоже. Возможна разница в головке цилиндров и поршнях т.к. установка турбины потребует снижения уровня сжатия. А добиться такого результата можно или специальными поршнями, или увеличением камеры сгорания. Поршни можно оставить и родные, а ограничиться только головкой.Впрыску необходим увеличенный ресивер и нестандартная программа управления. Стоит отметить что турбонаддув на ваз своими руками также потребует изменений смазки.Отличается и выпуск – между приемной трубой и выпускным коллектором теперь расположена турбина. Резонатор и глушитель желательно использовать стандартные, но для получения большой мощности можно установить и прямоточный выпуск.Установка турбины низкого давления – на ваше усмотрение и по вашим возможностям. В случае с автомобилем ВАЗ турбонаддув на ваз своими руками монтируют на привод правого колеса между приемной трубой и выпускным коллектором. К компрессору подается два воздушных патрубка. Первый соединен с ресивером, а второй с воздушным фильтром.Таким образом, наиболее дефицитная и дорогая деталь это турбина. Для сравнения можно привести турбину с характеристиками заводской машины и турбированной. Последний автомобиль оснащается стандартным выпуском, поэтому он не настроен на получение большой мощности. Автомобиль с турбированным двигателем позволяет получать максимум мощности.
Как сделать паровую турбину в домашних условиях?
Множество интернет-ресурсов публикует алгоритм, согласно которому в домашних условиях и с применением небольшого количества инструментов изготавливается мини паровая турбина из консервной банки. Помимо самой банки понадобится алюминиевая проволока, небольшой кусочек жести для вырезания полоски и крыльчатки, а также элементы крепежа.
В крышке банки делают 2 отверстия и впаивают в одно кусочек трубки. Из куска жести вырезают крыльчатку турбины, прикрепляют ее к полосе, согнутой в виде буквы П. Затем полосу прикручивают ко второму отверстию, расположив крыльчатку таким образом, чтобы лопасти находились напротив трубки. Все технологические отверстия, сделанные во время работы, тоже запаивают. Изделие нужно установить на подставку из проволоки, заполнить водой из шприца, а снизу разжечь сухое горючее. Импровизированный ротор паровой турбины начнет вращаться от струи пара, вырывающегося из трубки.
Понятно, что такая конструкция может служить лишь прототипом, игрушкой, поскольку данная паровая турбина, сделанная своими руками, не может использоваться с какой-то целью. Слишком мала мощность, а о каком-то КПД и речи не идет. Разве что можно показывать на ее примере принцип действия теплового двигателя.
Мини-генератор электроэнергии можно реально изготовить из старого металлического чайника. Для этого, кроме самого чайника, потребуется медная или нержавеющая трубка с тонкими стенками, кулер от компьютера и небольшой кусочек листового алюминия. Из последнего вырезается круглая крыльчатка с лопатками, из которой будет сделана паровая турбина малой мощности.
С кулера снимается электродвигатель и устанавливается на одной оси с крыльчаткой. Получившееся устройство монтируется в круглом корпусе из алюминия, по размерам он должен подойти вместо крышки чайника. В днище последнего делается отверстие, куда впаивается трубка, а снаружи из нее выполняется змеевик. Как видите, конструкция паровой турбины очень близка к реальности, поскольку змеевик играет роль пароперегревателя. Второй конец трубки, как нетрудно догадаться, подводится к импровизированным лопаткам крыльчатки.
Паровая электростанция: специфики работы установки
Система регулирования работы турбины при резком сбросе мощности и отключении ТГ от сети, должна лимитировать быстрый заброс скорости вращения ее ротора, и не позволить срабатывания датчика безопасности. Работа турбины не исключают вероятность мгновенного сброса электронапряжения до нуля. Также турбины должны предоставляет возможность возобновить нагрузку до исходной, или любой иной цифры в регулировочном диапазоне, при скорости не меньше 10% от номинальной мощности за секунду.
Паровые турбины применяют по большей части на фабричных силовых установках или электрических станциях
Обязательные рабочие режимы:
- С отключенным подогревателем большого давления;
- С нагрузкой в рамках своих нужд в границах 40 минут после сброса;
- На холостом ходу 15 минут после сброса электро- нагрузки;
- Для проведения проверки на холостом ходу 20 часов после пуска турбины;
- Служебный срок рабочих турбин между ремонтами обязан быть не меньше 4 лет;
- Новые агрегаты имеют гарантию в пять лет;
- Период работы на отказ у паровой турбины не меньше 6000 часов;
- Показатель готовности у установки не меньше 0,98.
Паровая турбина имеет служебный срок больше тридцати лет. Как исключение из правил лишь быстроизнашивающиеся детали и детали.
Паровая турбина вместо паровой машины
Часто звучит мнение — а зачем нам паровую машину изобретать? Давайте сразу паровую турбину!
Там деталей всего — колесо с лопатками и клапан выхода пара — регулировать мощность можно элементарно.
Нет ни поршней (для которых точность изготовления — это КПД), нет ни шатунов из которых смазка летит и которые всю машину разбалансируют, и которые в первую очередь разрушаются, если машина пойдет в разнос.
Не нужно также сложного устройства ограничения скорости оборотов, с маятниками и клапанами. Нужно просто прийти к Уатту и открыть ему глаза, ибо «а пацаны-то и не знают».
Хочу вас разочаровать. Пацаны знали.
Во-первых, не следует думать, что в те времена машины строили на ощупь. Уже все рассчитывалось до винтика. Для интересующихся есть подборка книг на английском языке, самые старые книги — 1805 год.
Как для попаданца в средневековье, то взятая оттуда «Cyclopedia of Engineering» 1910 года (в шести томах) была бы просто спасением, сейчас на эти темы так книги не пишут.
Нас интересует второй том, где речь идет про паровые турбины.
Во-вторых, почему-то мы сейчас решили, что во времена, когда внедряли паровую машину, никто не знал о турбине. Знали. И знал сам Джеймс Уатт.
И даже более того — его про турбину спрашивали: а не угрожает ли турбина изобретенной им паровой машине? На что он ответил: «О какой конкуренции может идти речь, если без помощи Бога нельзя заставить рабочие части двигаться со скоростью 1000 футов в секунду?»
Попытаюсь объяснить, почему он так ответил. Но сначала — о том, чего он не знал (и что знаем мы). Мы знаем сопло Лаваля. Это всего лишь форма сопла, из которого выходит пар, что крутит лопатки турбины.
У него есть одна особенность — пар выходит с очень большой скоростью, быстрее скорости звука.
Для сопла турбины — чем выше скорость, тем больше из потенциальной энергии давления переходит в кинетическую энергию, которая нам и нужна.
Чтобы ее линейная скорость была высокой, а количество оборотов низким — нужно строить турбинное колесо большого диаметра. Так и было — диаметр в 3 метра был нормальным решением.
Как соорудить мини-паротурбину своими руками
В Сети можно столкнуться с большим количеством вариантов, в которых рассматривается самодельный способ изготовления данного агрегата. Для этих целей будет использоваться обычная консервная банка, проволока из алюминия, кусочек жести, и крепежные материалы.
Перечисленные материалы позволят сделать задуманное дома, не применяя для этих целей специальное оборудование и инструмент. Данная турбина будет наглядно демонстрировать превращение энергии пара в электричество.
Процесс изготовления
В крышке банки проделывается два отверстия, в одно из которых впаивается часть трубки. Берется жесть и вырезается крыльчатка турбины и крепится к П-образной полоске. После этого крепится полоска на другое отверстие, крыльчатка закрепляется лопастями напротив трубки.
Сооружение крепят на проволочную подставку, берут шприц с водой и ее заполняют, а снизу зажигают сухое топливо. Из трубки будет вырываться струя пара, что приведет в движение импровизированный ротор.
Правда, мощности такой турбины ни на что не хватит, поскольку кпд ее очень низкий. Она может рассматриваться только в качестве макета для того, чтобы понять принцип работы оборудования.
Пару слов о китайских электро турбинах
Буквально 2 года назад, «автоинтернет» просто взорвался от электрических турбин из Китая. Предлагалась небольшая «штуковина», которая устанавливалась в разрыв шланга воздухозабора, которая якобы нагнетала воздух с давлением в двигатель, обещанное увеличение мощности аж до – 15%! Сам двигатель представлял из себя непонятный кулер, ни потребление электричества, ни обороты, ни прокачиваемый воздух – показателей не было. Если разобрать его даже визуально, то становится понятно — что это кулер на подобии продвинутых компьютерных, ну что он может увеличить? НИЧЕГО! Так что просто не покупаем – это РАЗВОД.
Сейчас конечно на тех же китайских сайтах начинают появляться другие электро турбины, многие сделаны даже в форме улитки – аля механический компрессор. Но опять же нет ни показателей давления, ни потребления, ни перекачки воздуха. Думайте, прежде чем покупать. Смотрим познавательный ролик.
Критическое давление и критическая скорость
Первые попытки изобретателей еще не изучивших процесса расширения пара, построить промышленно пригодную паровую турбину натолкнулись на следующее затруднение: оказывается, что если сосуд, в котором находится пар под давлением, снабдить нерасширяющейся трубкой (соплом) цилиндрической или иной формы (рис. 4), через которую будет происходить истечение пара в пространство с меньшим давлением, то пар в этой трубке будет терять давление и приобретать скорость, но только до определенного предела; в случае сухого насыщенного пара у выхода из трубки давление его не может быть меньше 0,58 начального давления. Это давление называется критическим давлением. Соответственно этому давлению мы получим и некоторую предельную скорость истечения, которая называется критической скоростью. Для перегретого пара критическое давление равно 0,546 от начального давления.
Таким образом, если в нашем сосуде находится сухой насыщенный пар при давлении р=10 ата, а выпускаем мы его в атмосферу, то в конце сопла мы получим давление
то есть мы используем для превращения в скоростной напор перепад давлений, равный только
Дальше, выйдя из устья сопла, пар, расширяясь уже в атмосфере, будет клубиться и увеличения скорости движения его в направлении оси сопла почти не произойдет. Следовательно, пользоваться цилиндрическим (нерасширяющимся)соплом целесообразно только тогда, когда начальное давление пара не превышает примерно двойного давления в пространстве, куда он вытекает; например, при выпуске пара в атмосферу рабочее давление перед соплом не должно превышать 1,8 ата.
Если отношение давлений перед и за трубкой больше 1,8, то для полного преобразования энергии давления в скоростную энергию нужно, чтобы трубка (сопло) имела после узкого сечения расширяющуюся часть (рис. 5).
Отличительная особенность расширяющегося сопла заключается в том, что давление пара у выхода из сопла может быть доведено до давления среды, в которую он вытекает. При этих условиях пар вытекает из сопла с сверхкритической скоростью и идет ровной струей, вся энергия которой может быть использована на лопатках турбины. Расширяющееся сопло дает возможность использовать любые перепады давлений, полностью преобразовываю в пределах данного перепада давлений потенциальную энергию пара в кинетическую.
Активный принцип
Так как кинетическая энергия тела пропорциональна квадрату скорости его движения, то даже тела с очень малой массой, но движущиеся с большими скоростями могут обладать большой кинетической энергией. С другой стороны, кинетическая энергия чрезвычайно быстро уменьшается при уменьшении скорости движения тела. По закону сохранения энергии всякое тело, движущееся с некоторой скоростью и задержанное в своем движении должно отдать при этом всю ту энергию, которую нужно было затратить, чтобы сообщить ему скорость, с которой оно двигалось.
При ударе струи о плоскую поверхность, перпендикулярную направлению движения струи, можно предположить два возможных случая:
а) Поверхность закреплена неподвижно; тогда кинетическая энергия задержанной в своем движении струи частично превратится в тепловую энергию, а частично будет расходоваться на отбрасывание частиц жидкости в стороны и в обратном направлении, на образование вихрей в струе и на разрушение поверхности. Никакой полезной работы при этом не будет совершено вследствие неподвижности поверхности.
б) Поверхность может перемещаться (рис 6,а)
; тогда кинетическая энергия частично превратится в работу перемещения поверхности, которую можно полезно использовать, а частично будет затрачена бесполезно (как и при неподвижной поверхности).
Очевидно, что в паровой турбине потеря энергии, то есть та часть энергии, которая не превращается в полезную работу, должна быть минимальной; кроме того, струя пара не должна повреждать поверхностей лопаток, на которые она направлена. Достигнуть этого при ударном действии струи нельзя; фурма лопаток турбины должна быть выбрана такой, чтобы струя пара, выходящая из сопла, плавно вступала на лопатки
и передавала им наибольшую возможную часть своей энергии.
Путем расчета и опытов было найдено, что поверхности тела, на которую направлена струя, следует придать такую форму, чтобы направленная на него струя совершала поворот и меняла направление своего движения на прямо противоположное (рис. 6,б)
Законы механики так объясняют взаимодействие между струей и предметом. На предмет (лопатку) действует со стороны движущейся криволинейно струи центробежная сила; она распределена по поверхности лопатки, оказывает на нее давление и заставляет перемещаться и совершать работу.
На (рис. 7)
изображена полукруглая лопатка. Предположим, что на нее направлена струя пара. Каждая частица пара действует на лопатку с силой, равной центробежной силе и направленной по нормали к поверхности лопатки, то есть по линии, соединяющей центрА полуокружности лопатки с центром тяжести частицы. Рассмотрим три такие частицыа, b , ис . Центробежные силыР , возникающие от частица ис , по законам механики можно разложить на силыР1 , напралвенные вертикально, и на силыР2 , направленные горизонтально. Вертикальные силыР1 направлены во взаимно противоположные стороны и, будучи равными по величине, взаимно уничтожаются, то есть не оказывают влияния на движение лопатки.
Горизонтальные силы Р2
становятся тем больше, чем ближе частица расположена к точке В, в которойР2=Р1 , аР1=0 . Сумма силР2 представляет собой ту силу, которая заставляет перемещаться лопатку вправо; помножив эту силу на путь, пройденный лопаткой, мы получим полезную работу, совершенную струей пара. При каких условиях эта работа будет максимально малой, мы рассмотрим ниже
На практике струя обычно направлена под некоторым углом к направлению движения лопаток (рис.
. Профили лопаток не представляют собой полуокружностей; они образуются отрезками кривых и прямых линий так, чтобы было обеспечено безударное вступление струи пара и высокое использование ее скорости.
Устройство паровой турбины
Паротурбинная установка – считается главным типом двигателей на современных тепловых и атомных электрических станциях, которые вырабатывают 85 – 90% электрической энергии, потребляемой по всему миру.
Вид и устройство паротурбинной установки
Паровые турбины выделяются большой быстроходностью. Она в основном равна 3000 об. мин., и имеют при этом сравнительно небольшие размеры и массу. В сегодняшней промышленности сегодня выпускают турбоагрегаты разных мощностей, даже такие, где в одном агрегате при высокой экономности более тысячи милионов ватт.
Изобретен этот аппарат издревле. В его создании участвовали многие ученые мужи. В Российской Федерации основоположником строительства паровых турбин в большинстве случаев считают Поликарпа Залесова, который внедрял данные строения в Алтайском крае в начале девятнадцатого столетия.
Паровые турбины разделяют на:
- Конденсационные;
- Теплофикационные;
- Специализированного назначения;
- Оживленные;
- Реактивные;
- Активно-раективные.
Самая популярная – конденсационная турбина – не прекращает работу с выпуском отработанного пара в конденсатор с глубоким вакуумом. От промежуточных ступенек ее турбин, в основном, берется определенное количество пара в целях регенерации. Основное назначение конденсационных установок – выработка электрической энергии.
Как работает
Стоит отметить, что принцип работы турбины на бензиновом двигателе такой же, как и на дизельном. Во время работы ДВС вырабатываются выхлопные газы. Они поступают в корпус (горячую часть улитки), где двигаются по лопаткам турбинного колеса. Последнее раскручивается до невероятных скоростей – 100 и более тысяч оборотов в минуту. Поскольку турбинное колесо жестко соединено с валом, крутящий момент передается на вторую холодную часть турбины. Та, в свою очередь, начинает захватывать кислород из атмосферы. Он проникает внутрь после того, как пройдет через фильтр. Далее воздух под давлением попадает во впускной коллектор, где смешивается с топливом и проникает в камеру сгорания. В качестве материалов для корпуса турбины используются жаропрочные марки стали и железоникелевый сплав.
Производительность компрессора зависит от ее формы и габаритных размеров. Чем больше ее диаметр, тем больше воздуха засасывается во впускной коллектор. Но нельзя постоянно увеличивать размеры компрессора. Это может привести к турбозадержке. Малая турбина раскручивается значительно быстрее до номинальной скорости. Но на пике имеет меньшую производительность. Поэтому размеры и форма элемента подбираются строго индивидуально для каждого ДВС. Нельзя установить агрегат от бензинового авто на дизельный, и наоборот. Хоть и имеет одинаковый принцип работы турбина, действовать она будет иначе на разных авто.
Важный момент: для регулирования давления наддува в конструкции предусмотрен специальный перепускной клапан. Он имеет пневматический привод, а управляется ЭБУ двигателя.
В каких случаях необходимо оборудование турбонаддувом
Многие автовладельцы желают оборудовать свою машину турбокомпрессором для увеличения мощностных характеристик. Современные авто, укомплектованные двигателями с большим количеством лошадиных сил, такой модернизации не требуют.
К такому шагу идут владельцы отечественных машин, не отличающихся особой мощностью. Рационально оборудовать турбокомпрессором малолитражки. Даже незначительный прирост лошадиных сил в их двигателях будет заметен и придаст им лучший разгон, улучшится динамика их работоспособности. Что придаст большей уверенности при обгоне другого транспорта в условиях скоростных трасс.
Изготовление своими руками — возможно ли это?
Паровые электрогенераторы обладают очень сложной структурой, поэтому изготовление своими руками подобных агрегатов достаточно проблематично. Тем не менее, при наличии некоторых знаний и необходимых материалов, сделать данный агрегат своими руками становится возможным.
Понятно, что итоговый вариант будет куда меньшего размера, чем заводские варианты. Кроме того, здесь будет совсем другое устройство для привода в движение имеющегося генератора — если в заводских моделях за это отвечает паровая турбина, то в домашнем варианте это будет делать двигатель.
На видео продемонстрирован походный паровой мини-генератор
Термоэлектрогенераторы
Электростанции с генераторами, построенными по принципу Пельтье – достаточно интересный вариант.
Физик Пельтье обнаружил эффект, который сводится к тому, что при пропускании электроэнергии через проводники, состоящие из двух разнородных материалов, на одном из контактов происходит поглощение тепла, а на втором – выделение.
Ветряные электростанции – бесплатное электричество у вас дома
Причем эффект этот обратный – если с одной стороны проводник разогревать, а со второй – охлаждать, то в нем будет образовываться электроэнергия.
Именно обратный эффект используется в электростанциях на дровах. При сгорании они разогревают одну половину пластины (она и является термоэлектрогенератором), состоящую их кубиков, сделанных из разных металлов, а вторая же ее часть – охлаждается (для чего используются теплообменники), в результате чего на выводах пластины появляется электроэнергия.
Но есть у такого генератора несколько нюансов. Один из них – параметры выделяемой энергии напрямую зависят от разницы температуры на концах пластины, поэтому для их выравнивания и стабилизации необходимо использование регулятора напряжения.
Второй нюанс заключается в том, что выделяемая энергия – лишь побочный эффект, большая часть энергии при сгорании дров просто преобразуется в тепло. Из-за этого КПД такого типа станции не очень высокая.
К достоинствам электростанций с термоэлектрогенераторами относятся:
- Длительный срок службы (нет подвижных частей);
- Одновременно вырабатывается не только энергия, но и тепло, которое можно использоваться для обогрева или приготовления пищи;
- Бесшумность работы.
Электростанции на дровах, использующие принцип Пельтье, — достаточно распространенный вариант, и выпускаются как портативные устройства, которые способны лишь выделить электроэнергии для зарядки маломощных потребителей (телефона, фонаря), так и промышленные, способные запитать мощные агрегаты.
Основные конструкции
В строение любых паровых турбин входят две основные части: ротор, статор. Ротор представляет собой подвижный элемент и обычно содержит лопатки нужной конфигурации. Статор — это неподвижная часть с соплами круглого сечения. Паровые механизмы бывают:
- Аксиальными — движение пара осуществляется вдоль оси устройства.
- Радиальными — лопатки установлены параллельно с осью механизма, что обеспечивает перпендикулярный выброс пара.
Турбины могут быть одноцилиндровыми и многоцилиндровыми. Последние обладают рядом преимуществ, так как позволяют использовать перепады внутренней энергии за счет нескольких стадий давления. Кроме того, в их конструкциях используются более качественные материалы для разделения потоков пара с разным давлением. В зависимости от расположения, валы могут быть:
- соосными;
- параллельными.
Многоцилиндровые конструкции обладают важным достоинством, так как они применяются в более мощных паровых устройствах. К их недостаткам можно отнести довольно сложную конструкцию и дороговизну.
Статор таких машин выполняется обязательно разборным, чтобы можно было снять ротор во время ремонта или технического обслуживания.